首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Martinez M  Brezun JM  Xerri C 《PloS one》2011,6(2):e16726
Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5-C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury.  相似文献   

2.
Acute and chronic postlesion reorganization of the cortical maps was examined in adult rats using electrophysiological mapping of the forepaw area in the primary somatosensory cortex. Recordings were made before and after (first 12 hr and 3 wk) induction of a focal thermal-ischemic lesion to a restricted part of the forepaw area. The influence of an anti-ischemic substance (piracetam) and housing in an enriched environment (EE) or impoverished environment (IE) on the organization of the spared regions of the cortical maps adjacent to the lesion was investigated. The results revealed (1) a gradual expansion of the injured zone and a cellular loss that were smaller in the piracetam-treated (PT) rats than in the placebo (PL) rats; (2) a better preservation of the somatotopic organization and the neuronal responsiveness in the maps of the PT rats during the first 12 hr after the lesion; (3) a gradual compression and fragmentation of the remaining forepaw map over the first 3 postlesion wk. These changes were found in all PL rats, with the most detrimental effects in the animals exposed to an IE. In the PT-EE animals, a contrasting substantial preservation of the map was observed. (4) Cortical responsiveness was diminished in the PL rats, whatever the environment, and in the PT-IE rats; but it was not significantly affected in the PT-EE animals. The findings demonstrate the protective function of acute piracetam treatment on electrophysiological properties of cortical neurons within the peri-infarct tissue and highlight the neuroprotective effects of an environmental therapy combined with the piracetam treatment during the weeks after ischemic damage.  相似文献   

3.
The vertebral column of the Atlantic white-sided dolphin, Lagenorhynchus acutus , reflects the radical reorganization of the cetacean column for locomotion in water. Both posterior thoracic and anterior caudal vertebrae have been "lumbarized," and discontinuities occur within the caudal series at the synclinal point and fluke base. Morphology changes subtly as body size increases. Neural process height increases more rapidly, and centrum length more variably, than other vertebral parameters. As a result, large animals have disproportionately tall neural processes, short necks, long mid-body regions, and short flukes. Vertebral columns of large animals also show greater complexity (range, irregularity, and polarization) of centrum length than do those of smaller animals. Comparisons among dolphins reveal that complexity trends with respect to differentiation of parts run counter to the trend with respect to number of parts, a relationship predicted by Williston in 1914.  相似文献   

4.
An electromyographical study has been made of carp swimming muscles at various points along the body length during sustained and burst locomotion. During sustained swimming, red muscles show a constant time lag between activation of anterior and posterior segments which is practically independent of the speed of locomotion. In contrast, anterior and posterior homolateral segments are activated simultaneously during bursts of rapid movement. This pattern of co-ordination between body segments differs from that reported for other species.  相似文献   

5.

Objectives

Two parallel pathways have been proposed between the hippocampus and neocortex. Recently, the anterior and posterior hippocampus showed distinct connectivity with different cortical areas in an fMRI study. We investigated whether the two parallel pathways could be confirmed in patients with transient global amnesia (TGA) which is a natural lesion model of a perturbation of the hippocampus. In addition, we evaluated the relationship between the location of the hippocampal lesion and various clinical variables.

Methods

A consecutive series of 37 patients were identified from the TGA registry database of Seoul National University Bundang Hospital. Based on the location of the diffusion-weighted imaging (DWI) lesion along the anterior-posterior axis of the hippocampus, they were divided into the following three groups: head (n = 15), body (n = 15) or tail (n = 7). To evaluate which cortical regions showed hypoperfusion according to the location of the DWI lesion, their SPECT images were compared between two groups using statistical parametric mapping. We performed hierarchical cluster analysis to group demographic and clinical variables, including the location of the DWI lesion, into clusters.

Results

Statistical parametric mapping analyses revealed that more anterior DWI lesions were associated with hypoperfusion of the anterior temporal and frontal areas, whereas more posterior lesions were associated with hypoperfusion of the posterior temporal, parietal, occipital and cerebellar areas. The difference was most prominent between the group of hippocampal lesions on the head and tail. Hierarchical cluster analysis demonstrated that vomiting was related to female gender and hippocampal head lesions, whereas vascular risk factors were related to male gender and hippocampal body lesions.

Conclusions

We confirmed the parallel pathways between the hippocampus and neocortex with DWI and SPECT images of patients with TGA. Patients with hippocampal head lesions and body lesions were clustered within different groups of clinical variables.  相似文献   

6.
By means of the method for revealing cholinesterases the alterations in the nervous system of Convoluta convoluta after mechanical lesion were studied. After a transversal transection of the animal into two pieces the anterior part of the body acquired the normal form within 3-4 days; the nervous system underwent inconsiderable transformations associated with a formation of a plexus in the injured area. The posterior parts of the body regenerated slowly. During the first days disintegration of the resting parts of the nervous system was observed. Later on the diffuse cholinesterase activity suggesting the beginning of the brain formation was manifested in the wound field. Plexus strands "grow" in the caudal direction from the brain in parallel with its development. Within three weeks the nervous system of the animals which had restored their mouth opening, body shape and normal behaviour consists of the brain and plexus not arranged in nervous trunks. The reaction of the nervous system to the ablation of a part of the brain and to a continuous mechanical injury were studied. The data obtained show a high morphological lability of the nervous system of Convoluta convoluta, its ability to radical structural rearrangements.  相似文献   

7.
Unilateral focal cortical suction lesions of varying diameter from 0.7 to 2.0 mm were made in the right posterior lateral cortex of rats. Only the 1.0 mm lesion size resulted in spontaneous postoperative hyperactivity. This increased activity was accompanied by significantly elevations in substantia nigra and caudate nucleus dopamine concentrations. Other lesion sizes did not effect behavior or brain biochemical concentrations in this fashion. These results suggest a functional organization in this area of posterior cortex which affects both neurochemistry and behavior.  相似文献   

8.
Extracellular unit activity of the anterior and posterior zones of the cingulate cortex and also of the anterior and posterior cortical association areas was analyzed in unanesthetized rabbits. In the posterior zone considerably more cells (60%) responded to hippocampal stimulation than in the anterior zone (18%). In 43% of these cells in the posterior zone but only in 5% in the anterior zone, the responses followed the frequency of stimulation. Unit responses in the posterior zone could be divided into two discrete groups: those with short (12.3 ± 6.5 msec) and those with long (50.2 ± 10.0 msec) latent periods. Inhibitory phenomena also were well marked during hippocampal stimulation. More than one-third of cells of the cingulate cortex responded to stimulation of the posterior association zones by spikes which followed the stimulus, and by subsequent inhibition. Responses of this kind to stimulation of the anterior association zones were found in only a few cells in the anterior zone of the cingulate cortex. The results are discussed in the light of data from morphological investigations relating to connections between these structures.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 270–277, May–June, 1982.  相似文献   

9.
Avulsion of spinal nerve roots in the brachial plexus (BP) can be repaired by crossing nerve transfer via a nerve graft to connect injured nerve ends to the BP contralateral to the lesioned side. Sensory recovery in these patients suggests that the contralateral primary somatosensory cortex (S1) is activated by afferent inputs that bypassed to the contralateral BP. To confirm this hypothesis, the present study visualized cortical activity after crossing nerve transfer in mice through the use of transcranial flavoprotein fluorescence imaging. In naïve mice, vibratory stimuli applied to the forepaw elicited localized fluorescence responses in the S1 contralateral to the stimulated side, with almost no activity in the ipsilateral S1. Four weeks after crossing nerve transfer, forepaw stimulation in the injured and repaired side resulted in cortical responses only in the S1 ipsilateral to the stimulated side. At eight weeks after crossing nerve transfer, forepaw stimulation resulted in S1 cortical responses of both hemispheres. These cortical responses were abolished by cutting the nerve graft used for repair. Exposure of the ipsilateral S1 to blue laser light suppressed cortical responses in the ipsilateral S1, as well as in the contralateral S1, suggesting that ipsilateral responses propagated to the contralateral S1 via cortico-cortical pathways. Direct high-frequency stimulation of the ipsilateral S1 in combination with forepaw stimulation acutely induced S1 bilateral cortical representation of the forepaw area in naïve mice. Cortical responses in the contralateral S1 after crossing nerve transfer were reduced in cortex-restricted heterotypic GluN1 (NMDAR1) knockout mice. Functional bilateral cortical representation was not clearly observed in genetically manipulated mice with impaired cortico-cortical pathways between S1 of both hemispheres. Taken together, these findings strongly suggest that activity-dependent potentiation of cortico-cortical pathways has a critical role for sensory recovery in patients after crossing nerve transfer.  相似文献   

10.
1. Induction of antibacterial activity was investigated in the ligated fifth instar larvae of the silkworm, Bombyx mori, by injection of formalin-treated Escherichia coli K-12 into the haemocoel in the anterior and in the posterior body part, followed by activity determination by inhibition zone assay of the haemolymph at 12 and 24 hr after immunization. 2. At 12 hr after immunization, high antibacterial activity, approximately 6.8-7.5 mm in the anterior body part and 4.5-6.4 mm in the posterior body part in diameter of a clear zone (2.0 mm for no activity) was detectable in day 3 larvae. This result was in good contrast to expression of lectin gene in the ligated flesh fly, Sarcophaga peregrena (Shiraishi and Natori, 1988, FEBS Lett. 232, 163-166), in which only the anterior part of insect responded to stimulus of injury. 3. Antibacterial activity at 24 hr after immunization in days 3 or 4 ligated larvae was lower than that at 12 hr; 4.0-4.5 mm of activity was observed in the anterior body part, and no activity was observed in day 3 ligated larvae in the posterior body part. 4. Acid polyacrylamide gel electrophoresis of the haemolymph of immunized insects followed by overlay assay showed that the size of antibacterial activity bands were similar between the haemolymph from 12 hr and from 24 hr, and between the anterior and the posterior body part. This result was contradictory to the observation of activity by inhibition zone assay. The activity bands were associated with peptides that were similar to cecropin-like peptides A and B in the silkworm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Multiunit microelectrode recording techniques were used to study the location and organization of the third somatosensory area (SIII) in cats. Representations of all major contralateral body parts were found in a small region of cortex along the lateral wing of the ansate sulcus and between the lateral sulcus and the suprasylvian sulcus. The systematic map of the body surface included forepaw and face regions previously identified as parts of SIII. The forepaw representation was generally buried on the rostral bank of the lateral wing of the ansate sulcus. The representations of the face and mystacial vibrissae were largely exposed on the rostral suprasylvian gyrus, but part of the representation of the face was also buried in the lateral wing of the ansate sulcus. Representations of the trunk and hindlimb extended from the suprasylvian gyrus onto the medial bank of the suprasylvian sulcus. We had expected to find these latter body parts in more medial cortex just caudal to the representation of these parts in the first somatosensory area (SI). Instead, neurons in penetrations in cortex caudal to the SI trunk and hindlimb representations were unresponsive to tactile stimulation. The unexpected location of the hindlimb in SIII led us to determine whether the proposed parts of SIII had similar cortical and thalamic connections. Injected anatomical tracers revealed that the representations of both the forelimb and hindlimb were interconnected with SI and a region of the thalamus just dorsal to the ventroposterior nucleus. Similarities in patterns of connections of forelimb and hindlimb portions of SIII supported the conclusion that SHI as presented here is a functional unit of cortex. We conclude that SIII has a somatotopic organization that does not parallel that in SI, and that SIII is not entirely coextensive with either area 5 or area 5a of Hassler and Muhs-Clement (1964).  相似文献   

12.
To understand the mechanism of cell migration, we cultured fibroblasts on micropatterned tracks to induce persistent migration with a highly elongated morphology and well-defined polarity, which allows microfluidic pharmacological manipulations of regional functions. The function of myosin II was probed by applying inhibitors either globally or locally. Of interest, although global inhibition of myosin II inhibited tail retraction and caused dramatic elongation of the posterior region, localized inhibition of the cell body inhibited nuclear translocation and caused elongation of the anterior region. In addition, local application of cytochalasin D at the tip inhibited frontal extension without inhibiting forward movement of the cell nucleus, whereas local treatment posterior to the nucleus caused reversal of nuclear movement. Imaging of cortical dynamics indicated that the region around the nucleus is a distinct compression zone where activities of anterior and posterior regions converge. These observations suggest a three-component model of cell migration in which a contractile middle section is responsible for the movement of a bulky cell body and the detachment/retraction of a resistive tail, thereby allowing these regions to undergo coordinated movement with a moving anterior region that carries little load.  相似文献   

13.
Sensory deafferentation produces extensive reorganization of the corresponding deafferented cortex. Little is known, however, about the role of the adjacent intact cortex in this reorganization. Here we show that a complete thoracic transection of the spinal cord immediately increases the responses of the intact forepaw cortex to forepaw stimuli (above the level of the lesion) in anesthetized rats. These increased forepaw responses were independent of the global changes in cortical state induced by the spinal cord transection described in our previous work (Aguilar et al., J Neurosci 2010), as the responses increased both when the cortex was in a silent state (down-state) or in an active state (up-state). The increased responses in the intact forepaw cortex correlated with increased responses in the deafferented hindpaw cortex, suggesting that they could represent different points of view of the same immediate state-independent functional reorganization of the primary somatosensory cortex after spinal cord injury. Collectively, the results of the present study and of our previous study suggest that both state-dependent and state-independent mechanisms can jointly contribute to cortical reorganization immediately after spinal cord injury.  相似文献   

14.
To study the role of the cholinergic system of the sensorimotor cortex in regulation of different manipulatory movements and locomotion of Wistar rats, the effects of injections of cholinergic drugs (a cholinergic agonist carbachol and an antagonist scopolamine) into the area of forepaw representation in the sensorimotor cortex on motor activity and performance of manipulatory movements (with prolonged and short pushing) were analyzed. The drugs were injected via special cannulae stereotaxically implanted into the cortex during surgery carried out under Nembutal anesthesia. Carbachol injections (0.03-3 micrograms in 1 microliter of physiologic solution) into the cortex resulted in a significant slowing down of both types of movements as well as an increase in locomotion in the open-field test. Injections of scopolamine (0.3-3 micrograms) into the same cortical area were accompanied by an increase in the number of fast manipulatory movements without significant changes in locomotor activity. The obtained evidence suggests that the cholinergic system of the sensorimotor cortex indifferent manners regulates the innate (locomotion) and acquired movements which require different periods of maintaining the muscle tone of the forepaw (short-time periods for the usual movements necessary for food taking from the narrow horizontal tube and prolonged periods for the learned slow movements with additional tactile and tonic components).  相似文献   

15.
《Journal of Physiology》1996,90(3-4):277-287
In a first study, the representations of skin surfaces of the hand in the primary somatosensory cortex, area 3b, were reconstructed in owl monkeys and squirrel monkeys trained to pick up food pellets from small, shallow wells, a task which required skilled use of the digits. Training sessions included limited manual exercise over a total period of a few hours of practice. From an early clumsy performance in which many retrieval attempts were required for each successful pellet retrieval, the monkeys exhibited a gradual improvement. Typically, the animals used various combinations of digits before developing a successful retrieval strategy. As the behavior came to be stereotyped, monkeys consistently engaged surfaces of the distal phalanges of one or two digits in the palpation and capture of food pellets from the smallest wells. Microelectrode mapping of the hand surfaces revealed that the glabrous skin of the fingertips predominantly involved in the dexterity task was represented over topographically expanded cortical sectors. Furthermore, cutaneous receptive fields which covered the most frequently stimulated digital tip surfaces were less than half as large as were those representing the corresponding surfaces of control digits. In a second series of experiments, Long-Evans rats were assigned to environments promoting differential tactile experience (standard, enriched, and impoverished) for 80 to 115 days from the time of weaning. A fourth group of young adult rat experienced a severe restriction of forepaw exploratory movement for either 7 or 15 days. Cortical maps derived in the primary somatosensory cortex showed that environmental enrichment induced a substantial enlargement of the cutaneous forepaw representation, and improved its spatial resolution (smaller glabrous receptive fields). In contrast, tactile impoverishment resulted in a degradation of the forepaw representation that was characterized by larger cutaneous receptive fields and the emergence of non-cutaneous responses. Cortical maps derived in the hemispheres contralateral to the immobilized forelimb exhibited a severe decrease of about 50% in the overall areal extent of the cutaneous representation of the forepaw, which resulted from the invasion of topographically organized cortical zones of non-cutaneous responses, and numerous discontinuities in the representation of contiguous skin territories. The size and the spatial arrangement of the cutaneous receptive fields were not significantly modified by the immobilization of the contralateral forelimb. Similar results were obtained regardless of whether the forelimb restriction lasted 7 or 15 days. These two studies corroborate the view that representational constructs are permanently reshaped by novel experiences through dynamic competitive processes. These studies also support the notion that subject-environment interactions play a crucial role in the maintenance of basic organizational features of somatosensory representations.  相似文献   

16.
BACKGROUND: When we view static scenes that imply motion - such as an object dropping off a shelf - recognition memory for the position of the object is extrapolated forward. It is as if the object in our mind's eye comes alive and continues on its course. This phenomenon is known as representational momentum and results in a distortion of recognition memory in the implied direction of motion. Representational momentum is modifiable; simply labelling a drawing of a pointed object as 'rocket' will facilitate the effect, whereas the label 'steeple' will impede it. We used functional magnetic resonance imaging (fMRI) to explore the neural substrate for representational momentum. RESULTS: Subjects participated in two experiments. In the first, they were presented with video excerpts of objects in motion (versus the same objects in a resting position). This identified brain areas responsible for motion perception. In the second experiment, they were presented with still photographs of the same target items, only some of which implied motion (representational momentum stimuli). When viewing still photographs of scenes implying motion, activity was revealed in secondary visual cortical regions that overlap with areas responsible for the perception of actual motion. Additional bilateral activity was revealed within a posterior satellite of V5 for the representational momentum stimuli. Activation was also engendered in the anterior cingulate cortex. CONCLUSIONS: Considering the implicit nature of representational momentum and its modifiability, the findings suggest that higher-order semantic information can act on secondary visual cortex to alter perception without explicit awareness.  相似文献   

17.
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.  相似文献   

18.
The general accepted concept about the MRF as an unspecific ascending activating system concerns only one of its multiple functions. Investigations on more than 100 hooded rats of the Long-Evans strain with small bilateral symmetric lesions in dorsal, central and ventral subnuclei of the MRF brought out the following results pointing to further important functions: 1. Each lesion type produced a different syndrome of parameter changes of the spontaneous open field behavior with some common tendencies of reduced ambulatory and exploratory activities. 2. Visual placing responses were strongly reduced or totally abolished after lesions without tendencies of recovery. 3. Changes of locomotion and muscular tonus were quite different or even opposite in dorsal, central and ventral types of lesions. 4. In four tasks of postoperative active avoidance acquisition or retention and performance of preoperatively learned tasks the impairments were different related to the lesion type including a different loss in brightness discrimination. The results support the hypothesis that MRF subdivisions participate differently in information selection, tuning and coupling information with goal directed movements of different type. Lesions severely disturb the proper use of some information for a cue, especially visual cues when they are in the anterior part of the mesencephalon.  相似文献   

19.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

20.
余启祥  包建新 《生理学报》1989,41(2):136-144
在三碘季铵酚制动的去大脑猫上,记录了小脑后叶的第Ⅶ小叶皮层浦肯野细胞(PC)对分别刺激顶核、间位核和齿状核的逆行场电位和逆行单位反应,以确定小脑皮层PC对这三个核团投射的空间分布。在鉴定了PC对其靶核团的投射后,用特制的模拟自然屈腕运动的刺激装置来推动猫同侧前肢的掌背,造成腕关节一次轻微的屈曲,观察该PG对这一刺激的单位反应。实验资料用电子计算机处理,作出平均诱发电位和刺激后时间直方图。 本文以电生理学方法揭示,猫小脑后叶第Ⅶ小叶皮层-核团投射存在较明确的纵区分布模式,纵区之间的分界线走向有一定的弯曲,与前叶略有不同。小脑后叶皮层从中线到两侧2.8mm为顶核区(FZ);其外侧为间位核区(IZ),最大宽度约为3.5mm;齿状核区(DZ)约始于5.0mm处。这三个不同纵区的PC对外周自然屈腕刺激都有反应,但反应细胞的百分数不同,FZ有59%的PC对外周刺激有反应,IZ为84%,DZ为20%。这些结果表明后叶第Ⅶ小叶具有类似于前叶的功能分布,IZ的PC对外周刺激有更大的调制作用,提示该皮层-核团投射的纵区结构有其特定的功能意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号