首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AIM: To determine the sensitivity of methods for detection of injured and uninjured Escherichia coli O157:H7 (E. coli O157) in raw and pasteurized milk. METHODS AND RESULTS: Raw milk, pasteurized milk with 1.5% fat content and pasteurized milk with 3.5% fat content were spiked with E. coli O157 at low levels. The samples were enriched in modified tryptone soya broth with novobiocin (mTSBn) at 37 degrees C. Aliquots of the enriched culture were analysed either by manual immunomagnetic separation (MIMS) and culturing on sorbitol MacConkey agar with or without cefixime and potassium tellurite (SMACct or SMAC), or by automated immunomagnetic separation and integrated ELISA (EiaFosstrade mark). Uninjured E. coli O157 organisms were detected in milk by both methods at 1 cfu 10 ml-1 sample). Injured organisms were detected at levels of about 4 cfu 10 ml-1 sample. Direct enrichment in mTSBn (22 h incubation) showed better sensitivity for injured cells than enrichment in buffered peptone water (BPW, 22 h incubation), or in a two-step enrichment consisting of BPW (6 h, 37 degrees C) and mTSBn (16 h, 37 degrees C), successively. CONCLUSIONS: The methods showed equal sensitivity in that they were both able to detect 1 cfu 10 ml-1 milk sample. Injured organisms can be detected and isolated at a level almost as low as this. A resuscitation step is not recommended for the detection and isolation of injured and non-injured E. coli O157 from milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to the dilution of contamination in the bulk tank, analysis of milk for the presence of E. coli O157 requires a very sensitive method. Both methods described here are useful for such analysis.  相似文献   

2.
The effects of temperature on protein synthesis by Escherichia coli, a mesophile, and Pseudomonas fluorescens, a psychotroph, were investigated by using whole-cell and cell extract preparations. After shifts to 5 degrees C, protein was synthesized at a slowly decreasing rate for 1 h by both organisms, after which P. fluorescens synthesized protein at a new rate corresponding to its 5 degrees growth rate, in contrast to E. coli which did not synthesize protein at a measurable rate. In vitro protein-synthesizing systems using MS-2 RNA, endogenous mRNA, and purified polysomes were utilized to investigate initiation of translation at 5 degrees C. In these systems, P. fluorescens cell extracts synthesized protein at linear rates for up to 2 h at 5 degrees C, whereas E. coli cell extracts synthesized protein for only 25 min at 5 degrees C. The rates of polypeptide elongation, as tested by the incorporation of phenylalanine into polyphenylalanine by cell extract protein-synthesizing systems from both organisms, were identical over the range of 25 to 0 degrees C. The polysome profiles of E. coli whole cells shifted from 37 to 5 degrees C showed accumulation of 70S ribosomal particles and ribosomal subunits at the expense of polysomes. Similar experiements done with P. fluorescens resulted in polysome reformation at 5 degrees C. In vitro experiments demonstrated that the 70S ribosomal particles, which accumulated in E. coli at 5 degrees C, were capable of synthesizing protein in vitro in the absence of added mRNA. These in vivo and in vitro results suggest that incubation of E. coli at subminimal temperatures results in a block in initiation of translation causing polysomal runoff and the accumulation of 70S particles, some of which are 70S monosomes.  相似文献   

3.
Four food types held hot at 45 to 60 degrees C were deliberately contaminated with O1 and non-O1 Vibrio cholerae strains. These organisms were assayed for survival and recovery from the foods within 1 h of the time the food was kept hot. The results showed no growth of V. cholerae non-O1 on thiosulfate-citrate bile-sucrose agar plates after 24 h of incubation at 37 degrees C for food held hot at 50 to 60 degrees C. Growth was low for V. cholerae O1 and was not achieved in some instances in which foods were held at either 55 or 60 degrees C after 40 or 60 min of from the time the food was kept hot. Both organisms, however, were recovered equally from all food types held at all temperatures after 48 h of incubation. When incubated for an additional 24 h, the organisms grew to unusually small-sized colonies, measuring 0.1 to 0.3 mm in diameter, on the same agar plates that were negative for growth after an initial 24 h of incubation. It was concluded that V. cholerae survived the period of time held at hot temperatures. Although the organisms were not recovered from some foods when held at some of the temperatures and times after 24 h of incubation, they remained viable. An incubation period of 48 h at 37 degrees C was found to be appropriate for the recovery of V. cholerae from hot foods.  相似文献   

4.
A rapid method for enumerating fecal coliforms in foods was developed employing an agar pour-plate medium. After 7 h of incubation at 41.5 +/- 0.05 C, this medium effectively allows the growth of fecal coliforms only. This rapid method was compared with the Association of Official Analytical Chemists multiple-tube dilution method for Escherichia coli, by using 21 samples of fresh, cut-up chicken and a surface rinsing procedure for sample preparation. Verification of picked colonies was carried out in EC broth using parallel incubation temperatures of 45.5 and 44.5 +/- 0.05 C. Verifications for these temperatures averaged 79 and 98%, respectively. All positively verified isolates were E. coli types I and II, as were the negatives. Geometric means for the verified 7-h plate count were within 12% of the standard means for both EC broth incubation temperatures.  相似文献   

5.
This study compared the performance of a commercial chromogenic medium, CHROMagarECC (CECC), and CECC supplemented with sodium pyruvate (CECCP) with the membrane filtration lauryl sulfate-based medium (mLSA) for enumeration of Escherichia coli and non-E. coli thermotolerant coliforms (KEC). To establish that we could recover the maximum KEC and E. coli population, we compared two incubation temperature regimens, 41 and 44.5 degrees C. Statistical analysis by the Fisher test of data did not demonstrate any statistically significant differences (P = 0.05) in the enumeration of E. coli for the different media (CECC and CECCP) and incubation temperatures. Variance analysis of data performed on KEC counts showed significant differences (P = 0.01) between KEC counts at 41 and 44.5 degrees C on both CECC and CECCP. Analysis of variance demonstrated statistically significant differences (P = 0.05) in the enumeration of total thermotolerant coliforms (TTCs) on CECC and CECCP compared with mLSA. Target colonies were confirmed to be E. coli at a rate of 91.5% and KEC of likely fecal origin at a rate of 77.4% when using CECCP incubated at 41 degrees C. The results of this study showed that CECCP agar incubated at 41 degrees C is efficient for the simultaneous enumeration of E. coli and KEC from river and marine waters.  相似文献   

6.
Four food types held hot at 45 to 60 degrees C were deliberately contaminated with O1 and non-O1 Vibrio cholerae strains. These organisms were assayed for survival and recovery from the foods within 1 h of the time the food was kept hot. The results showed no growth of V. cholerae non-O1 on thiosulfate-citrate bile-sucrose agar plates after 24 h of incubation at 37 degrees C for food held hot at 50 to 60 degrees C. Growth was low for V. cholerae O1 and was not achieved in some instances in which foods were held at either 55 or 60 degrees C after 40 or 60 min of from the time the food was kept hot. Both organisms, however, were recovered equally from all food types held at all temperatures after 48 h of incubation. When incubated for an additional 24 h, the organisms grew to unusually small-sized colonies, measuring 0.1 to 0.3 mm in diameter, on the same agar plates that were negative for growth after an initial 24 h of incubation. It was concluded that V. cholerae survived the period of time held at hot temperatures. Although the organisms were not recovered from some foods when held at some of the temperatures and times after 24 h of incubation, they remained viable. An incubation period of 48 h at 37 degrees C was found to be appropriate for the recovery of V. cholerae from hot foods.  相似文献   

7.
Fluorogenic assays for immediate confirmation of Escherichia coli.   总被引:50,自引:23,他引:27       下载免费PDF全文
Rapid assays for Escherichia coli were developed by using the compound 4-methylumbelliferone glucuronide (MUG), which is hydrolyzed by glucuronidase to yield a fluorogenic product. The production of glucuronidase was limited to strains of E. coli and some Salmonella and Shigella strains in the family Enterobacteriaceae. For immediate confirmation of the presence of E. coli in most-probable-number tubes, MUG was incorporated into lauryl tryptose broth at a final concentration of 100 micrograms/ml. Results of both the presumptive test (gas production) and the confirmed test (fluorescence) for E. coli were obtained from a variety of food, water, and milk samples after incubation for only 24 h at 35 degrees C. Approximately 90% of the tubes showing both gas production and fluorescence contained fecal coliforms (they were positive in EC broth incubated at 45 degrees C). Few false-positive reactions were observed. The lauryl tryptose broth-MUG-most-probable-number assay was superior to violet red bile agar for the detection of heat- and chlorine-injured E. coli cells. Anaerogenic strains produced positive reactions, and small numbers of E. coli could be detected in the presence of large numbers of competing bacteria. The fluorogenic assay was sensitive and rapid; the presence of one viable cell was detected within 20 h. E. coli colonies could be distinguished from other coliforms on membrane filters and plates of violet red bile agar if MUG was incorporated into the culture media. A rapid confirmatory test for E. coli that is amenable to automation was developed by using microtitration plates filled with a nonselective medium containing MUG. Pure or mixed cultures containing E. coli produced fluorescence within 4 h (most strains) to 24 h (a few weakly positive strains).  相似文献   

8.
We found effective enrichment procedures for detecting Escherichia coli O26 in foods using methods that are used for E. coli O157. Ground beef or radish sprouts inoculated with approximately 6 colony-forming units of E. coli O26 were homogenized in 225 ml of various broths. After static incubation at 37 degrees C or 42 degrees C for 6 h or 18 h, we isolated the inoculated bacterium by plating onto Rainbow Agar O157 with novobiocin. In combination with the immunomagnetic separation method, E. coli O26 was isolated from all samples by using enrichment in tryptone soy broth at 37 degrees C for 6 h and in modified E. coli broth with novobiocin (mEC + n) at 42 degrees C for 18 h in ground beef and radish sprouts, respectively. Enrichment in mEC + n at 42 degrees C for 18 h was effective for isolating both E. coli O26 and E. coli O157 from both ground beef and radish sprouts.  相似文献   

9.
Four membrane filter methods fecal coliform enumeration were evaluated and compared in six laboratories based on determination of accuracy, specificity, upper counting limit, and recovery comparability. Recovery accuracy with pure cultures ranged from 89 to 100% for m-FC, mTEC (a procedure developed for thermotolerant Escherichia coli), and m-FC2 methods (the latter incorporating a 2-h, 35 degrees C resuscitation period), but was less than 60% for the MacConkey membrane broth method. These figures dropped by approximately 40 to 55% when the cultures were subjected to temperature (10 degrees C) stress. Close to 800 colonies were verified to determine specificity. False-positive colonies occurred most frequently with the m-FC2 method (18%), whereas false-negative colonies were most common on MacConkey membrane broth (26%). In counting range experiments using a variety of samples, the highest upper counting limit was 130 colonies per filter with the mTEC procedure. Recovery comparisons were based on over 130 samples including raw surface waters, raw sewage, and chlorinated and unchlorinated sewage effluents. In general, recoveries were significantly higher with the m-FC2 and mTEC methods; however, on m-FC2, growth of nontarget background organisms was also higher in most cases. Highest recoveries from chlorinated sewage effluents were obtained by the mTEC method, and the addition of a similar resuscitation period to the m-FC procedure (m-FC2) improved fecal coliform recovery from such samples. The best overall performance for fecal coliform enumeration was obtained with the mTEC method with high recovery and low levels of background colonies, good specificity and accuracy, and a high upper counting limit. This procedure also offers the advantage of enumerating E. coli within 24 h.  相似文献   

10.
A study was undertaken to determine the fate of Escherichia coli O157:H7 in ground, roasted beef as influenced by the combined effects of pH, acidulants, temperature, and time. There was essentially no change in the viable population of E. coli O157:H7 when beef salads (pH 5.40 to 6.07) containing up to 40% mayonnaise were incubated at 5 degrees C for up to 72 h. At 21 and 30 degrees C, significant (P < or = 0.05) increases in populations of the organism occurred in salads containing 16 to 32% mayonnaise (pH 5.94 to 5.55) between 10 and 24 h of incubation. Death was more rapid as the pH of acidified beef slurries incubated at 5 degrees C was decreased from 5.98 to 4.70. E. coli O157:H7 grew in control slurries (pH 5.98) and in slurries containing citric and lactic acids (pHs 5.00 and 5.40) incubated at 21 degrees C for 24 h; decreases occurred in slurries acidified to pHs 4.70, 5.00, and 5.40 with acetic acid or pH 4.70 with citric or lactic acid. At 30 degrees C, populations decreased in slurries acidified to pHs 4.70 and 5.00 with acetic acid. Citric and lactic acids failed to prevent significant increases in populations in slurries at pH 4.70 to 5.40 between 10 and 24 h of incubation. The order of effectiveness of acidulants in inhibiting growth was acetic acid > lactic acid > or = citric acid. The same order was observed for inactivation of E. coli O157:H7 in acidified (pH 5.00) beef slurry heated at 54 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A membrane filter-Endo agar method for enumerating Escherichia coli as distinct from other coliforms in drinking water was developed. Membranes containing coliform colonies are transferred to nutrient agar containing 4-methyl umbelliferyl-beta-D-glucuronide (MUG) and incubated at 35 degrees C for 4 h. The MUG is hydrolyzed by the glucuronidase of E. coli and the fluorogenic product is visualized. The method recovered 98% of E. coli without false positives and is proposed as an additional test in routine water examination for the detection of pollution.  相似文献   

12.
Atypical Escherichia coli in streams.   总被引:1,自引:1,他引:0       下载免费PDF全文
In the examination of stream waters for fecal coliforms, pale yellow colonies regularly appeared on m-FC broth base medium plates. The yellow colonies may comprise 70% more of the colonies of an m-FC plate. More than 80% of these colonies were identified as Escherichia coli by the API 20E identification system and by serotyping. The atypical yellow E. coli strains were not environmentally stressed E. coli since the atypical colonies continued to be yellow on m-FC medium after growth in a nonselective medium. However, 50% of the atypical E. coli strains were o-nitrophenyl-beta-D-galactopyranoside positive, and 20% produced gas in EC medium at 44.5 degrees C. Failure to consider these atypical E. coli strain in water quality analyses could lead to a significant error in the estimation of water quality in some instances.  相似文献   

13.
Survival, sublethal injury, and recoverability of Escherichia coli, Enterococcus faecalis, Salmonella typhimurium, and Yersinia enterocolitica were investigated by using diffusion chambers over 54 to 56 days of in situ exposure to a polar marine environment (-1.8 degrees C; salinity, 34.5 ppt) at McMurdo Station, Antarctica. Plate counts were used to assess recoverability and injury, whereas direct viable counts (DVCs) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction were utilized to determine substrate responsiveness and respiratory activity, respectively. T90 values (times for 10-fold decreases in numbers of recoverable cells) on nonselective medium were ca. 216 to 259 h for E. coli, S. typhimurium, and Y. enterocolitica and 432 h for E. faecalis. Sublethal injury was greater in populations of indicator bacteria than in pathogens. DVCs, CTC reduction, and plate counts indicated progressive increases in viable but nonculturable cells in E. coli, S. typhimurium, and Y. enterocolitica cultures throughout the 54-day exposure. Forty-eight-day exposure of E. coli, S. typhimurium, and Y. enterocolitica resulted in decreased optimal incubation temperatures for colony formation and inability to form colonies at 37 degrees C. The detection of responsive E. coli, S. typhimurium, and Y. enterocolitica by the DVC and CTC methods remained within 1% of inoculum values during 54 days of exposure, indicating some long-term persistence in the viable-but-nonculturable state. Percentages of respiring E. coli and S. typhimurium increased significantly upon addition of nutrients at all temperatures tested, indicating that nutrient availability rather than temperature limited enteric bacterial activity in this very cold environment. Large nutrient inputs to low-temperature marine environments may thus allow for the long-term persistence of enteric bacteria in a nonrecoverable state.  相似文献   

14.
In the examination of stream waters for fecal coliforms, pale yellow colonies regularly appeared on m-FC broth base medium plates. The yellow colonies may comprise 70% more of the colonies of an m-FC plate. More than 80% of these colonies were identified as Escherichia coli by the API 20E identification system and by serotyping. The atypical yellow E. coli strains were not environmentally stressed E. coli since the atypical colonies continued to be yellow on m-FC medium after growth in a nonselective medium. However, 50% of the atypical E. coli strains were o-nitrophenyl-beta-D-galactopyranoside positive, and 20% produced gas in EC medium at 44.5 degrees C. Failure to consider these atypical E. coli strain in water quality analyses could lead to a significant error in the estimation of water quality in some instances.  相似文献   

15.
The practical task of adapting an original potentiometric technique to the bacteriological analysis of water is discussed. Various laboratory strains of organisms belonging to the usual aquatic flora were inoculated one by one in a minimal lactose broth supplied with lipoic (thioctic) acid. The time evolution of the redox potential of the cultures was followed during incubation by combined gold versus reference electrodes. When the incubation temperature was regulated at 36 degrees C, most organisms were able to grow and to reduce the coenzyme, generating changes in the redox potential of the culture. However, very few organisms developed significant reductive activity when the temperature was increased to 41 degrees C and when the broth was provided with sodium deoxycholate. Among the fecal coliform organisms, only Escherichia coli and Klebsiella pneumoniae exhibited early but reproducible potential-time responses. Positive potentiometric responses were also recorded with Acinetobacter calcoaceticus. E. coli showed rapid potentiometric signals as compared with K. pneumoniae. The time required for 100-mV shift of potential to be detected was related to the logarithm of the initial concentration of E. coli or K. pneumoniae in the culture broth. Experiments on natural surface water samples showed the the potentiometric method, associated with the selective incubation conditions, mainly detected E. coli among the bacterial flora of the tested environmental water. The calibration curve relating the time required for a 100-mV shift of potential to be detected to the number of fecal coliforms, as determined by control fecal coliform-selective plate counts, was consistent with the composite standard curve of detection times obtained with six different laboratory strains of E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The practical task of adapting an original potentiometric technique to the bacteriological analysis of water is discussed. Various laboratory strains of organisms belonging to the usual aquatic flora were inoculated one by one in a minimal lactose broth supplied with lipoic (thioctic) acid. The time evolution of the redox potential of the cultures was followed during incubation by combined gold versus reference electrodes. When the incubation temperature was regulated at 36 degrees C, most organisms were able to grow and to reduce the coenzyme, generating changes in the redox potential of the culture. However, very few organisms developed significant reductive activity when the temperature was increased to 41 degrees C and when the broth was provided with sodium deoxycholate. Among the fecal coliform organisms, only Escherichia coli and Klebsiella pneumoniae exhibited early but reproducible potential-time responses. Positive potentiometric responses were also recorded with Acinetobacter calcoaceticus. E. coli showed rapid potentiometric signals as compared with K. pneumoniae. The time required for 100-mV shift of potential to be detected was related to the logarithm of the initial concentration of E. coli or K. pneumoniae in the culture broth. Experiments on natural surface water samples showed the the potentiometric method, associated with the selective incubation conditions, mainly detected E. coli among the bacterial flora of the tested environmental water. The calibration curve relating the time required for a 100-mV shift of potential to be detected to the number of fecal coliforms, as determined by control fecal coliform-selective plate counts, was consistent with the composite standard curve of detection times obtained with six different laboratory strains of E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A procedure of bacteria application to disks from the colonies was used for determining antibiotic inactivation in the disks by the bacteria colonies after the disk direct contact with the colonies. Changes in the antibiotic activity in the disks were registered after incubation at 37 degrees C for 2 hours. It was shown that ampicillin resistant strains of E. coli K12 carrying R plasmids and strains of S. typhimurium and S. aureus inactivated the antibiotics in the disks and their population were homogenous in this respect. It is advisable to use the procedure in assaying drug resistance of bacterial populations.  相似文献   

18.
W right , R.C. 1984. A new selective and differential agar medium for Escherichia coli and coliform organisms. Journal of Applied Bacteriology 56 , 381–388.
An enriched lauryl sulphate-aniline blue agar medium which is selective for Escherichia coli and coliform organisms is described. From faecal samples, the medium gave higher counts of colonies producing acid from lactose than media containing bile salts. From contaminated water and food samples, the medium gave comparable or higher counts of colonies identified as E. coli than standard media. Colonies of E. coli were more readily differentiated from those of other coliform organisms.  相似文献   

19.
It has been demonstrated that the genome of phage D3112 of Preudomonas aeruginosa can be transposed into Escherichia coli chromosome as a component of the hybrid plasmid RP4 TcrKms::D3112. Also, transposition of D3112 from E. coli (D3112) chromosome into RP4 plasmid occurs. The phage stimulates the chromosome mobilizing activity of RP4 plasmid, similar to other transposons. E. coli (RP4::D3112) cells were previously shown to form no colonies at 30 degrees C. Auxotrophic mutants and mutants incapable of utilizing different carbohydrates were found among E. coli clones survived after a long incubation at 30 degrees C (at frequencies approximately 10(-3) - 10(-4). These mutants inherited stably the capability to produce D3112 phage. E. coli auxotrophic mutants have arisen indeed as a consequence of phage integration into the E. coli chromosome, since prototrophic transductants derived from these mutants after their treatment with generalized transducing P1 phage have lost the ability to produce D3112 phage. Clones with mutations in Km or Tc genes of RP4 plasmid, occurring at high frequencies (about 3%) were found after introduction of RP4 into E. coli (D3112). These mutant RP4 plasmids carry insertions of D3112 genomes. Clones of E. coli which lost mutant plasmids still produce D3112 and retain their initial auxotrophic mutations.  相似文献   

20.
AIMS: To compare immunomagnetic separation (IMS) protocols (enrichment media and temperature) for the isolation of Escherichia coli serotypes O26 and O111 from four different foods. METHODS AND RESULTS: Foods (minced beef, cheese, apple juice and pepperoni) spiked with low numbers (<100 g(-1)) of stressed nalidixic mutant E. coli serotypes O26 and O111 were enriched in media based on buffered peptone water (BPW), tryptone soya and EC broths incubated at temperatures of 37 and 42 degrees C to optimize the IMS technique. BPW enrichments gave increased recoveries of both serotypes compared with tryptone soya and EC broths. Elevated temperatures of incubation at 42 degrees C were superior to 37 degrees C. CONCLUSIONS: Positive detection of low numbers of stressed target pathogens in all replicate tests was only possible using BPW enrichments. The majority of tests from alternative enrichments resulted in zero or single colonies recovered post-IMS. SIGNIFICANCE AND IMPACT OF THE STUDY: The optimum IMS protocol would improve isolation rates of E. coli O26 and O111 from foods and lead to increased safety for the consumer. Sub-optimal IMS protocols could lead to foods being incorrectly labelled free from these pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号