首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mao Y  Kerr M  Freeman M 《PloS one》2008,3(3):e1827

Background

The development of the Drosophila eye imaginal disc requires complex epithelial rearrangements. Cells of the morphogenetic furrow are apically constricted and this leads to a physical indentation in the epithelium. Posterior to the furrow, cells start to rearrange into distinct clusters and eventually form a precisely patterned array of ommatidia. These morphogenetic processes include regulated changes of adhesion between cells.

Methodology/Principal Findings

Here, we show that two transmembrane adhesion proteins, Capricious and Tartan, have dynamic and complementary expression patterns in the eye imaginal disc. We also describe novel null mutations in capricious and double null mutations in capricious and tartan. We report that they have redundant functions in regulating the architecture of the morphogenetic furrow and ommatidial spacing.

Conclusions/Significance

We conclude that Capricious and Tartan contribute to the adhesive properties of the cells in the morphogenetic furrow and that this regulated adhesion participates in the control of spacing ommatidial clusters.  相似文献   

3.
Pattern formation in the Drosophila retina proceeds by the recruitment of cells, along a morphogenetic front, into a lattice. At the advancing front, marked by a dorso-ventral furrow in the eye imaginal disc, cells are organized into ommatidial precursors, each containing cells destined to become photoreceptors 2, 3, 4, 5, and 8. Behind the front, a mitotic wave produces photoreceptors 1, 6, and 7, plus the remaining cells needed to complete the ommatidia. During the third larval instar, the front sweeps anteriorly across the eye disc, leaving a highly ordered pattern in its wake. Preceding the dorso-ventral furrow is a groove that bisects the eye disc into dorsal and ventral halves and presumably plays a role in establishing the equatorial symmetry line. Cell lineage plays little role in pattern formation in the eye. Genetic mosaics show that the cells of each ommatidium are not derived from a single mother cell; the cells appear to be recruited at random at the morphogenetic front. Similarly, the mirror symmetry above and below the equator is not established by a clonal mechanism; a single clone can contribute cells to ommatidia on both sides of the equator.  相似文献   

4.
Remodeling epithelia is a primary driver of morphogenesis. Here, we report a central role of myosin II in regulating several aspects of complex epithelial architecture in the Drosophila eye imaginal disc. The epithelial indentation of the morphogenetic furrow is established from a pattern of myosin II activation defined by the developmental signals Hedgehog and Decapentaplegic. More generally, patterned myosin activation can control diverse three-dimensional epithelial sculpting. We have developed a technique to image eye disc development in real time, and we show that myosin II also regulates higher-order organization of cells in the plane of the epithelium. This includes the clustering of cells into ommatidial units and their subsequent coordinated rotation. This later clustering function of myosin II depends on EGF receptor signaling. Our work implies that regulation of the actomyosin cytoskeleton can control morphogenesis by regulating both individual cell shapes and their complex two-dimensional arrangement within epithelia.  相似文献   

5.
During development, a small number of conserved signaling molecules regulate regional specification, in which uniform populations of cells acquire differences and ultimately give rise to distinct organs. In the Drosophila eye imaginal disc, Wingless (Wg) signaling defines the region that gives rise to head tissue. JAK/STAT signaling was thought to regulate growth of the eye disc but not pattern formation. However, we show that the JAK/STAT pathway plays an important role in patterning the eye disc: it promotes formation of the eye field through repression of the wg gene. Overexpression of the JAK/STAT activating ligand Unpaired in the eye leads to loss of wg expression and ectopic morphogenetic furrow initiation from the lateral margins. Conversely, tissue lacking stat92E, which cannot transduce JAK/STAT signals, is transformed from retinal tissue into head cuticle, a phenotype that is also observed with ectopic Wg signaling. Consistent with this, cells lacking stat92E exhibit ectopic wg expression. Conversely, wg is autonomously repressed in cells with hyperactivated Stat92E. Furthermore, we show that the JAK/STAT pathway regulates a small enhancer in the wg 3' cis genomic region. As this enhancer is devoid of Stat92E-binding elements, we conclude that Stat92E represses wg through another, as yet unidentified factor that is probably a direct target of Stat92E. Taken together, our study is the first to demonstrate a role for the JAK/STAT pathway in regional specification by acting antagonistically to wg.  相似文献   

6.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.  相似文献   

7.
8.
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.  相似文献   

9.
10.
In Drosophila the eye-antennal disc gives rise to most adult structures of the fly's head. Yet the molecular basis for its regionalization during development is poorly understood. Here we show that homothorax is required early during development for normal eye development and is necessary for the formation of the ventral head capsule. In the ventral region of the disc only, homothorax and wingless are involved in a positive feedback loop necessary to restrict eye formation. homothorax is able to prevent the initiation and progression of the morphogenetic furrow without inducing wingless, which points to homothorax as a key negative regulator of eye development. In addition, we show that the iroquois-complex genes are required for dorsal head development antagonizing the function of homothorax in this region of the disc.  相似文献   

11.
12.

Background  

The secreted morphogen Dpp plays important roles in spatial regulation of gene expression and cell cycle progression in the developing Drosophila eye. Dpp signaling is required for timely cell cycle arrest ahead of the morphogenetic furrow as a prelude to differentiation, and is also important for eye disc growth. The dpp gene is expressed at multiple locations in the eye imaginal disc, including the morphogenetic furrow that sweeps across the eye disc as differentiation initiates.  相似文献   

13.
The regulatory gene hairy is expressed and required during early embryogenesis to control segmentation gene expression properly and during larval and pupal development to control the pattern of certain adult sensory structures. We have found the hairy protein to be expressed transiently during two stages of eye imaginal disc development, including all cells immediately anterior to the morphogenetic furrow that traverses the developing eye disc, and again in the presumptive R7 photoreceptor cells of the developing ommatidia. This pattern is conserved in a significantly diverged Drosophila species. We show that, surprisingly, ommatidia formed by homozygous hairy- mutant clones are apparently normal, indicating that hairy function in the eye is dispensable. However, we do find that ectopic expression of hairy causes numerous structural abnormalities and the alteration of cell fates. Thus, proper regulation of hairy is still essential for normal eye development. We suggest that the loss of hairy function may be compensated by other regulatory proteins, as has been observed previously for several structurally and functionally related genes involved in sensory organ development. The effects of ectopic hairy expression may result from interactions with proneural genes involved in the development of the eye and other sensory organs.  相似文献   

14.
15.
Drosophila imaginal discs are sac-like appendage primordia comprising apposed peripodial and columnar cell layers. Cell survival in disc columnar epithelia requires the secreted signal Decapentaplegic (DPP), which also acts as a gradient morphogen during pattern formation. The distribution mechanism by which secreted DPP mediates global cell survival and graded patterning is poorly understood. Here we report detection of DPP in the lumenal cavity between apposed peripodial and columnar cell layers of both wing and eye discs. We show that peripodial cell survival hinges upon DPP signal reception and implicate DPP-dependent viability of the peripodial epithelium in growth of the entire disc. These results are consistent with lumenal transmission of the DPP survival signal during imaginal disc development.  相似文献   

16.
We report that the hindsight (hnt) gene, which encodes a nuclear zinc-finger protein, regulates cell morphology, cell fate specification, planar cell polarity and epithelial integrity during Drosophila retinal development. In the third instar larval eye imaginal disc, HNT protein expression begins in the morphogenetic furrow and is refined to cells in the developing photoreceptor cell clusters just before their determination as neurons. In hnt mutant larval eye tissue, furrow markers persist abnormally posterior to the furrow, there is a delay in specification of preclusters as cells exit the furrow, there are morphological defects in the preclusters and recruitment of cells into specific R cell fates often does not occur. Additionally, genetically mosaic ommatidia with one or more hnt mutant outer photoreceptor cells, have planar polarity defects that include achirality, reversed chirality and misrotation. Mutants in the JNK pathway act as dominant suppressors of the hnt planar polarity phenotype, suggesting that HNT functions to downregulate JUN kinase (JNK) signaling during the establishment of ommatidial planar polarity. HNT expression continues in the photoreceptor cells of the pupal retina. When an ommatidium contains four or more hnt mutant photoreceptor cells, both genetically mutant and genetically wild-type photoreceptor cells fall out of the retinal epithelium, indicating a role for HNT in maintenance of epithelial integrity. In the late pupal stages, HNT regulates the morphogenesis of rhabdomeres within individual photoreceptor cells and the separation of the rhabdomeres of adjacent photoreceptor cells. Apical F-actin is depleted in hnt mutant photoreceptor cells before the observed defects in cellular morphogenesis and epithelial integrity. The analyses presented here, together with our previous studies in the embryonic amnioserosa and tracheal system, show that HNT has a general role in regulation of the F-actin-based cytoskeleton, JNK signaling, cell morphology and epithelial integrity during development.  相似文献   

17.
Events in the morphogenetic furrow set the stage for all subsequent compound eye development in Drosophila. The periodic pattern of the adult eye begins in the furrow with the spaced initiation of ommatidial rudiments, the preclusters. A wave of mitosis closely follows the furrow. A cell-by-cell analysis reveals details of these events. Early stages of ommatidial assembly can be resolved using a lead sulfide stain. Overt ommatidial organization begins in the morphogenetic furrow as cells gather into periodically spaced concentric aggregates. A stereotyped sequence of cell rearrangements converts these aggregates into preclusters. In the furrow, new rows of ommatidia are initiated at the equator and grow as new clusters are added to the peripheral ends. Mitotic labeling using BrdU feeds shows that all cells not incorporated into a precluster divide. BrdU injections show that cells divide roughly simultaneously between two adjacent rows of ommatidia.  相似文献   

18.
Ellipse alleles are mutations of the EGF-receptor homologue that reduce the number of ommatidia in the eye imaginal disc. Cobalt sulfide staining, expression of hairy and scabrous proteins, and mosaic analysis indicated that Elp mutations affect ommatidial precluster formation in the morphogenetic furrow. BrdU incorporation studies suggest that cells diverted from precluster formation instead enter S-phase after the morphogenetic furrow. Genetic studies suggest that the DER has multiple functions during eye development and that several recessive hypomorphic alleles affect another aspect of DER function that is required after precluster formation. Elp mutations show genetic interactions with the neurogenic mutations Notch and Delta. The small number of ommatidia that differentiate in Elp/Elp are separated more than in wildtype and have been studied to investigate what aspects of ommatidium development are intrinsic to the ommatidium itself. It appears that each developing ommatidium cues the determination of photoreceptors, cone cells, and primary pigment cells, but that the secondary and tertiary pigment cells, and the mechanosensory bristles, can form independently. The normal rotation of ommatidia in the dorsal-ventral axis does not require the presence of the ommatidial array. A short-range signal from a nearby ommatidium is important for mitosis. Cells not close to an ommatidium do not go through mitosis and many die.  相似文献   

19.
Planar polarity patterning involves long-range signaling and signal transduction. In Drosophila eye, Dishevelled (Dsh) is not only crucial for cell-autonomous transduction of a polarity signal(s) but is also involved in nonautonomous signaling function. To identify the sites for long-range polarity signaling in eye disc, we examined spatial and temporal conditions for nonautonomous Dsh function. Here we show that Dsh and its downstream factor Armadillo (Arm) are required in the border region of eye disc between the peripodial membrane (PM) and the disc proper (DP) for nonautonomous signaling. Conditional misexpression of Dsh or Arm at the posterior margin of the disc was sufficient to induce nonautonomous polarity reversals. A critical time window for the induction of such changes was approximately coincident with the timing of morphogenetic furrow initiation. Our data suggest that the disc margin is an essential site for organizing planar polarity during the initial stage of retinal morphogenesis.  相似文献   

20.
During Drosophila eye development, the posterior-to-anterior movement of the morphogenetic furrow coordinates cell cycle progression with the early events of pattern formation. The cdc25 phosphatase string (stg) has been proposed to contribute to the synchronization of retinal precursors anterior to the furrow by driving cells in G(2) through mitosis and into a subsequent G(1). Genetic and molecular analysis of Drop (Dr) mutations suggests that they represent novel cis-regulatory alleles of stg that inactivate expression in eye. Retinal precursors anterior to the furrow lacking stg arrest in G(2) and fail to enter mitosis, while cells within the furrow accumulate high levels of cyclins A and B. Although G(2)-arrested cells initiate normal pattern formation, the absence of stg results in retinal patterning defects due to the recruitment of extra photoreceptor cells. These results demonstrate a requirement for stg in cell cycle regulation and cell fate determination during eye development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号