首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrate embryos, spinal motor neurons project through segmentally reiterated nerves into the somites. Here, we report that zebrafish secondary motor neurons, which are similar to motor neurons in birds and mammals, depend on myotomal cues to navigate into the periphery. We show that the absence of myotomal adaxial cells in you-too/gli2 embryos severely impairs secondary motor axonal pathfinding, including their ability to project into the somites. Moreover, in diwanka mutant embryos, in which adaxial cells are present but fail to produce cues essential for primary motor growth cones to pioneer into the somites, secondary motor axons display similar pathfinding defects. The similarities between the axonal defects in you-too/gli2 and diwanka mutant embryos strongly suggest that pathfinding of secondary motor axons depends on myotome-derived cues, and that the diwanka gene is a likely candidate to produce or encode such a cue. Our experiments also demonstrate that diwanka plays a central role in the migration of primary and secondary motor neurons, suggesting that both neural populations share mechanisms underlying axonal pathfinding. In summary, we provide compelling evidence that myotomal cells produce multiple signals to initiate and control the migration of spinal nerve axons into the somites.  相似文献   

2.
3.
En route to their targets, motor axons encounter choice points at which they select their future path. Experimental studies predict that at each choice point specialized cells provide local guidance to pathfinding motor axons, however, the identity of these cells and their signals is unknown. Here, we identify the zebrafish unplugged gene as a key component for choice point navigation of pioneering motor axons. We show that in unplugged mutant embryos, motor neuron growth cones reach the choice point but make inappropriate pathway decisions. Analysis of chimeric embryos demonstrates that unplugged activity is produced by a selective group of mesodermal cells located adjacent to the choice point. As the first motor growth cones approach the choice point, these mesodermal cells migrate away, suggesting that unplugged activity influences growth cones by a contact-independent mechanism. These data suggest that unplugged defines a somite-derived signal that elicits differential guidance decisions in motor growth cones.  相似文献   

4.
During vertebrate embryogenesis different classes of motor axons exit the spinal cord and migrate on common axonal paths into the periphery. Surprisingly little is known about how this initial migration of spinal motor axons is controlled by external cues. Here, we show that the diwanka gene is required for growth cone migration of three identified subtypes of zebrafish primary motoneurons. In diwanka mutant embryos, motor growth cone migration within the spinal cord is unaffected but it is strongly impaired as motor axons enter their common path to the somites. Chimera analysis shows that diwanka gene activity is required in a small set of myotomal cells, called adaxial cells. We identified a subset of the adaxial cells to be sufficient to rescue the diwanka motor axon defect. Moreover, we show that this subset of adaxial cells delineates the common axonal path prior to axonogenesis, and we show that interactions between these adaxial cells and motor growth cones are likely to be transient. The studies demonstrate that a distinct population of myotomal cells plays a pivotal role in the early migration of zebrafish motor axons and identify the diwanka gene as a somite-derived cue required to establish an axonal path from the spinal cord to the somites.  相似文献   

5.
The role of specific axonal tracts for the guidance of growth cones was investigated by examining axonal outgrowth within the abnormal brain tracts of zebrafish cyclops mutants. Normally, the earliest differentiating neurons in the zebrafish brain establish a simple scaffold of axonal tracts. Later-developing axons follow cell-specific pathways within this axonal scaffold. In Cyclops embryos, this scaffold is perturbed due to the deletion of some ventromedial neurons that establish parts of the axonal scaffold and the development of an abnormal crease in the brain. In these mutant embryos, the growth cones projected by the neurons of the nucleus of the posterior commissure (nur PC) are deprived of the two tracts of axons that they sequentially follow to first extend ventrally, then posteriorly. These growth cones respond to the abnormal scaffold in several interesting ways. First, nuc PC growth cones initially always extend ventrally as in wild-type embryos. This suggests that for the first portion of their pathway the axons they normally follow are not required for proper navigation. Second, approximately half of the nuc PC growth cones follow aberrant longitudinal pathways after the first portion of their pathway. This suggests that for the longitudinal portion of the pathway, specific growth cone/axon interactions are important for guiding growth cones. Third, although approximately half of the nuc PC growth cones follow aberrant longitudinal pathways, the rest follow normal pathways despite the absence of the axons that they normally follow. This suggests that cues independent of these axons may be capable of guiding nuc PC growth cones as well. These results suggest that different guidance cues or combinations of cues guide specific growth cones along different portions of their pathway. 1994 John Wiley & Sons, Inc.  相似文献   

6.
Directional guidance of nerve growth cones   总被引:4,自引:0,他引:4  
The intricate connections of the nervous system are established, in part, by elongating axonal fibers that are directed by complex guidance systems to home in on their specific targets. The growth cone, the major motile apparatus at the tip of axons, explores its surroundings and steers the axon along a defined path to its appropriate target. Significant progress has been made in identifying the guidance molecules and receptors that regulate growth cone pathfinding, the signaling cascades underlying distinct growth cone behaviors, and the cytoskeletal components that give rise to the directional motility of the growth cone. Recent studies have also shed light on the sophisticated mechanisms and new players utilized by the growth cone during pathfinding. It is clear that axon pathfinding requires a growth cone to sample and integrate various signals both in space and in time, and subsequently to coordinate the dynamics of its membrane, cytoskeleton and adhesion to generate specific responses.  相似文献   

7.
We wished to know whether the cell death and phagocytosis seen near the outgrowing nerve front in the hindlimb delineate axon pathways and, if so, whether the cells died only in the presence of growth cones. We unilaterally deleted the lumbosacral neural tube and reconstructed the patterns of neurite outgrowth and phagocytes during the stage when neurites first begin to colonize the thigh. In the control limbs, sensory and motor nerve pathways coincided with sites of phagocytosis, including those pathways that had yet to be colonized by growth cones. For instance, phagocytes were clustered at foci within the muscle masses where muscle nerves form a day later. However, they were not seen in adjacent, nonpathway regions such as posterior sclerotome or dorsal and ventral to the region of the plexus in which axons extend only posteriorly. Phagocytes were also seen in defined regions that are probably inaccessible to growth cones because they are too distant from pathways (i.e., subjacent to the apical ectodermal ridge) or express substances that are typical of precartilagenous tissues which may prohibit axon advance. In the experimental limbs, we conservatively estimated that neurite outgrowth was reduced to less than one-tenth (neurites were visible only with electron microscopy) or less than one-third of normal. Outgrowth extended less far distally and, in half the cases, motor innervation was completely abolished. Despite the extensive reduction in neurite outgrowth, the distribution of phagocytes was indistinguishable from that of the control side. Furthermore, the number of phagocytes did not differ significantly. We conclude that cell death delineates axon pathways remarkably well and does so without an interaction with growth cones; it is an independent characteristic of the axonal pathways and may be directly or indirectly important to axonal pathfinding. This is the first identification of a feature that characterizes prospective nerve pathways in the hindlimb.  相似文献   

8.
One of the earliest guidance decisions for spinal cord motoneurons occurs when pools of motoneurons orient their growth cones towards a common, segmental exit point. In contrast to later events, remarkably little is known about the molecular mechanisms underlying intraspinal motor axon guidance. In zebrafish sidetracked (set) mutants, motor axons exit from the spinal cord at ectopic positions. By single-cell labeling and time-lapse analysis we show that motoneurons with cell bodies adjacent to the segmental exit point properly exit from the spinal cord, whereas those farther away display pathfinding errors. Misguided growth cones either orient away from the endogenous exit point, extend towards the endogenous exit point but bypass it or exit at non-segmental, ectopic locations. Furthermore, we show that sidetracked acts cell autonomously in motoneurons. Positional cloning reveals that sidetracked encodes Plexin A3, a semaphorin guidance receptor for repulsive guidance. Finally, we show that sidetracked (plexin A3) plays an additional role in motor axonal morphogenesis. Together, our data genetically identify the first guidance receptor required for intraspinal migration of pioneering motor axons and implicate the well-described semaphorin/plexin signaling pathway in this poorly understood process. We propose that axonal repulsion via Plexin A3 is a major driving force for intraspinal motor growth cone guidance.  相似文献   

9.
The migration of cells and growth cones is a process that is guided by extracellular cues and requires the controlled remodeling of the extracellular matrix along the migratory path. The ADAM proteins are important regulators of cellular adhesion and recognition because they can combine regulated proteolysis with modulation of cell adhesion. We report that the C. elegans gene unc-71 encodes a unique ADAM with an inactive metalloprotease domain. Loss-of-function mutations in unc-71 cause distinct defects in motor axon guidance and sex myoblast migration. Many unc-71 mutations affect the disintegrin and the cysteine-rich domains, supporting a major function of unc-71 in cell adhesion. UNC-71 appears to be expressed in a selected set of cells. Genetic mosaic analysis and tissue-specific expression studies indicate that unc-71 acts in a cell non-autonomous manner for both motor axon guidance and sex myoblast migration. Finally, double mutant analysis of unc-71 with other axon guidance signaling molecules suggests that UNC-71 probably functions in a combinatorial manner with integrins and UNC-6/netrin to provide distinct axon guidance cues at specific choice points for motoneurons.  相似文献   

10.
Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to mediate growth cone lamellipodia and filopodia formation and axon pathfinding. While much is known about the regulation of Arp2/3, less is known about regulators of UNC-115/abLIM. Here we show that the Caenorhabditis elegans counterpart of the Receptor for Activated C Kinase (RACK-1) interacts physically with the actin-binding protein UNC-115/abLIM and that RACK-1 is required for axon pathfinding. Genetic interactions indicate that RACK-1 acts cell-autonomously in the UNC-115/abLIM pathway in axon pathfinding and lamellipodia and filopodia formation, downstream of the CED-10/Rac GTPase and in parallel to MIG-2/RhoG. Furthermore, we show that RACK-1 is involved in migration of the gonadal distal tip cells and that the signaling pathways involved in this process might be distinct from those involved in axon pathfinding. In sum, these studies pinpoint RACK-1 as a component of a novel signaling pathway involving Rac GTPases and UNC-115/abLIM and suggest that RACK-1 might be involved in the regulation of the actin cytoskeleton and lamellipodia and filopodia formation in migrating cells and growth cones.  相似文献   

11.
Polysialic acid influences specific pathfinding by avian motoneurons.   总被引:6,自引:0,他引:6  
J Tang  L Landmesser  U Rutishauser 《Neuron》1992,8(6):1031-1044
The influence of polysialic acid (PSA) on the neural cell adhesion molecule on motoneuron outgrowth and pathway formation was investigated by determining its temporal and spatial pattern of expression and by the effect that its removal had on motoneuron projection patterns. Motoneurons first expressed PSA as their growth cones began to segregate into motoneuron pool-specific groups in the plexus region; furthermore, PSA levels differed between motoneurons projecting to different targets. When PSA was removed during the period of axonal segregation in the plexus region projection errors were common. However, later removal during the process of muscle nerve formation did not result in projection errors. These results suggest that PSA modulates interactions between motoneuron axons and guidance molecules in the plexus region during axonal pathfinding.  相似文献   

12.
Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect beta-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that beta-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, beta-Spectrin is associated with alpha-Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of beta-Spectrin significantly reduces levels of neuronal alpha-Spectrin expression, whereas gain of beta-Spectrin leads to an increase in alpha-Spectrin protein expression. Because the loss of alpha-spectrin does not result in an embryonic nervous system phenotype, beta-Spectrin appears to act at least partially independent of alpha-Spectrin to control axonal patterning.  相似文献   

13.
The establishment of synaptic connections between motor neurons and muscle fibers is essential for controlled body movements in any higher organism. The wiring of the neuromuscular system in Drosophila serves as a model system for the identification of key regulatory proteins that control axon guidance and target recognition. Sidestep (Side) is a transmembrane protein of the immunoglobulin superfamily and plays a pivotal role in the coordination of motor axonal guidance decisions, as it functions as a target-derived attractant. Side, however, is expressed in a highly dynamic pattern during embryogenesis, making it difficult to deduce its precise function. We have recently shown that the expression of Side strongly correlates with the actual position of motor axonal growth cones. Motor axons seem to recognize and follow Side-positive surfaces until they reach their target fields. The motor neuronal protein Beaten path Ia (Beat) is required to detect Side. In beat mutant embryos, motor axons are no longer attracted to Side-expressing tissues. In addition, Beat and Side interact biochemically, forming heterophilic adhesion complexes in vitro. Here, I discuss the model that preferential adhesion of Beat-expressing growth cones to Side-labeled substrates could be a powerful mechanism to guide motor axons.  相似文献   

14.
Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.  相似文献   

15.
Guidance of vascular and neural network formation   总被引:15,自引:0,他引:15  
Blood vessels and nerves are structurally similar complex branched systems. Their guidance must be exquisitely regulated to ensure proper wiring of both networks. Recent results showed that specialized endothelial cells, resembling axonal growth cones, form the tips of growing capillaries. These endothelial tip cells guide outgrowing capillaries in response to gradients of extracellular matrix-bound vascular endothelial growth factor. Several axon guidance molecules, including Semaphorins, Netrins, Ephrins and Slits, have also been implicated in vessel pathfinding and network formation. In particular, Semaphorin3E and its receptor plexinD1 in addition to the Netrin receptor UNC5B have recently been shown to direct endothelial tip cell navigation.  相似文献   

16.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

17.
The release of extracellular proteases by the axonal growth cone has been proposed to facilitate its movement by digesting cell-cell and cell-matrix contacts in the path of the advancing growth cone. The serine protease plasminogen activator (PA) has been shown to be secreted and focally concentrated at axonal growth cones of cultured mammalian neurons. Thus, PAs are well-placed to play an active role in growth cone movement and axonal pathfinding in development and regeneration. We discuss recent findings that suggest that the biological action of these proteases is more complex than originally thought. Received: 15 May 1997 / Accepted: 4 June 1997  相似文献   

18.
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.  相似文献   

19.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

20.
As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号