首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new microscopic aschelminth-like animal, Limnognathia maerski nov. gen. et sp., is described from a cold spring at Disko Island, West Greenland, and assigned to Micrognathozoa nov. class. It has a complex of jaws in its pharynx, and the ultrastructure of the main jaws is similar to that of the jaws of advanced scleroperalian gnathostomulids. However, other jaw elements appear also to have characteristics of the trophi of Rotifera. Jaw-like structures are found in other protostome taxa as well-for instance, in proboscises of kalyptorhynch platyhelminths, in dorvilleid polychaetes and aplacophoran mollusks-but studies of their ultrastructure show that none of these jaws is homologous with jaws found in Gnathostomulida, Rotifera, and Micrognathozoa. The latter three groups have recently been joined into the monophylum Gnathifera Ahlrichs, 1995, an interpretation supported by the presence of jaw elements with cuticular rods with osmiophilic cores in all three groups. Such tubular structures are found in the fulcrum of all Rotifera and in several cuticular sclerites of both Gnathostomulida and Micrognathozoa. The gross morphology of the pharyngeal apparatus is similar in the three groups. It consists of a ventral pharyngeal bulb and a dorsal pharyngeal lumen. The absence of pharyngeal ciliation cannot be used as an autapomorphy in the ground pattern of the Gnathifera because the Micrognathozoa has the plesiomorphic alternative with a ciliated pharyngeal epithelium. The body of Limnognathia maerski nov. gen. et sp. consists of a head, thorax, and abdomen. The dorsal and lateral epidermis have plates formed by an intracellular matrix, as in Rotifera and Acanthocephala; however, the epidermis is not syncytial. The ventral epidermis lacks internal plates, but has a cuticular oral plate without ciliary structures. Two ventral rows of multiciliated cells form a locomotory organ. These ciliated cells resemble the ciliophores present in some interstitial annelids. An adhesive ciliated pad is located ventrally close to a caudal plate. As in many marine interstitial animals-e.g., gnathostomulids, gastrotrichs, and polychaetes-a special form of tactile bristles or sensoria is found on the body. Two pairs of protonephridia with unicellular terminal cells are found in the trunk; this unicellular condition may be the plesiomorphic condition in Bilateria. Only specimens with the female reproductive system have been found, indicating that all adult animals are parthenogenetic females. We suggest that 1) jaws of Gnathostomulida, Rotifera, and the new taxon, Micrognathozoa, are homologous structures; 2) Rotifera (including Acanthocephala) and the new group might be sister groups, while Gnathostomulida could be the sister-group to this assemblage; and 3) the similarities to certain gastrotrichs and interstitial polychaetes are convergent.  相似文献   

2.
3.
Based on the extremely small sizes of their jaw components, I predict that members of the Micrognathozoa will have some of the smallest nuclear genomes of any metazoans or, possibly, even of any free‐living (non‐parasitic) eukaryotes. Micrognathozoan jaws may also be enervated by anucleate neurons. Consistent with the prediction of small genomes, micrognathozoan jaw parts have remarkably small cell nuclei. Identical arguments may apply to other members of the Gnathifera, namely Rotifera and Gnathostomulida. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 640–644.  相似文献   

4.
Loriciferans, cycliophorans and micrognathozoans are amongstthe latest groups of animals to be discovered. Other than allbeing microscopic, they have very different body plans and arenot closely related. Loriciferans were originally assigned tothe Aschelminthes. However, both new molecular and ultrastructuralresearches have shown that Aschelminthes consist of two unrelatedgroups, Cycloneuralia and Gnathifera. Cycloneuralia may be includedin the Ecdysozoa, including all molting invertebrates, and Gnathiferaare more closely related to Platyhelminthes. The phylum Loriciferashares many apomorphic characters (e.g., scalids on the introvert)with both Priapulida and Kinorhyncha, and can be included inthe taxon Scalidophora, a subgroup of Cycloneuralia. Cycliophorawas originally allied to the Entoprocta and Ectoprocta (Bryozoa)based on ultrastructual research. Subsequent molecular datashow they may be related to Rotifera and Acanthocephala, withinthe taxon Gnathifera. The phylogenetic position of Cycliophorais therefore not settled, and more ultrastructural and moleculardata are needed. Micrognathozoa is the most recent major groupof animals to be described. They show strong affinities withboth Rotifera and Gnathostomulida (within the taxon Gnathifera),especially in the fine structure of the pharyngeal apparatus,where the jaw elements have cuticular rods with osmiophiliccores. Furthermore the micrognathozoans have two rows of multiciliatedcells that form a locomotory organ, similar to that seen insome gastrotrichs and interstitial annelids. This characteris never seen in Rotifera or in the monociliated Gnathostomulida.Rotifera and Acanthocephala always have a syncytial epidermis(Syndermata). Micrognathozoa lack this characteristic feature.Therefore, they are postulated to be placed basally in the Gnathifera,either as a sister-group to Gnathostomulida or as a sister-groupto Rotifera + Acanthocephala.  相似文献   

5.
The phylogeny of Rotifera was examined in different computer‐generated cladistic analyses, including Seisonidea, Bdelloidea, Flosculariacea, Collothecacea and all ploimids treated on family level. The analyses were based on a character matrix solely dealing with morphological characters, primarily based on the trophi morphology. Limnognathia maerski (Micrognathozoa), Rastrognathia macrostoma and Gnathostomula paradoxa (Gnathostomulida) were used as outgroups. The cladistic analysis performed by paup produced 288 most parsimonious trees. peewee analyses produced between 140 and 432 trees, depending on the concavity value. The monophyly of Eurotatoria, Monogononta and Ploima was confirmed in all obtained trees. All analyses suggested a division of Ploima into major clades. One clade corresponded to Transversiramida while the other contained all other ploimid taxa and recognized Antrorsiramida as a monophylum. Based on the obtained results a scenario for the trophi evolution is proposed. The analyses suggested that the presence of an incus is synapomorphic for Gnathifera while mallei are synapomorphic for Micrognathozoa and Rotifera. The ancestral rotifer trophi probably resembled those in Harringia (Asplanchnidae).  相似文献   

6.
Micrognathozoa is the most recently discovered higher metazoan lineage. The sole known species of the group, Limnognathia maerski, was originally reported from running freshwater in Disko Island (Greenland), and has recently been recorded from the subantarctic region. Because of the presence of a particular type of jaws formed of special cuticularized rods, similar to those of gnathostomulids and rotifers, the three metazoan lineages were considered closely related, and assigned to the clade Gnathifera. A phylogenetic comparison of four molecular loci for Limnognathia maerski and other newly generated sequences of mainly acoelomate animals showed that Micrognathozoa may constitute an independent lineage from those of Gnathostomulida and Rotifera. However, the exact position of Micrognathozoa could not be determined due to the lack of support for any given relationships and due to the lack of stability in the position of Limnognathia maerski under analysis of different loci and of different parameter sets for sequence comparison. Nuclear loci tend to place Micrognathozoa with the syndermatan/cycliophoran taxa, but the addition of the mitochondrial gene cytochrome c oxidase subunit I favors a relationship of Micrognathozoa to Entoprocta.  相似文献   

7.
The study contributes to the discussion of mastax evolution within Rotifera by giving an insight into the ultrastructure of the mastax in the rotifer species Filinia longiseta (Flosculariacea) and additionally into the bdelloid rotifer species Adineta vaga and Zelinkiella synaptae. The existence of cuticularized jaw elements (trophi) in the mastax, a muscular pharynx, is one of the defining rotiferan characters and the basis on which the monophyletic taxon Gnathifera Ahlrichs 1995a, comprising Rotifera, Gnathostomulida, Micrognathozoa and Acanthocephala, was erected. By means of SEM observations of the trophi and ultrathin serial sections (TEM) of the mastax, the internal and external organization of the jaw elements of F. longiseta is reconstructed. TEM sections of the incus of Filinia demonstrate that the fulcrum and the rami are built up by multitudes of tiny cuticular tubes. While tubular substructures in the rotiferan fulcrum have been described previously, distinct cuticular tubes as a substructure of the ramus have only been described for species belonging to the taxa Seisonidea and Bdelloidea so far ( [Koehler and Hayes, 1969] and [Ahlrichs, 1995b]). By comparing the appearance and arrangement of the cuticular tubes in the rami of F. longiseta to those found in species of Seisonidea and Bdelloidea, a higher degree of resemblance between the structures in F. longiseta and Bdelloidea can be reported. The occurrence of the ramus substructures in species of Seisonidea (Paraseison annulatus and Seison nebaliae) is given consideration to represent an intermediate between the ramus substructure of Bdelloidea/Flosculariacea and Ploima. Additionally, the mastax musculature of F. longiseta, being associated with the trophi, is described: A total of seven muscles are found that directly insert the jaw elements or are indirectly associated with them via muscle-to-muscle connections.  相似文献   

8.
Within Spiralia, Gnathifera may represent the deepest branching lineage comprising the jaw worms Gnathostomulida and their sister group Micrognathozoa + Syndermata. Yet, very few nervous system studies have been conducted on this lineage of microscopic, jaw-bearing worms, limiting our understanding of the evolution of this organ system in Spiralia. The nervous system of representatives from all major groups of Gnathostomulida was here mapped using confocal laser scanning microscopy and immunohistochemistry. Their intra-epidermal, unsegmented nervous systems comprise an anterior brain and three to five ventral and two to four dorsal longitudinal nerves, connected by few transverse commissures. Neurites of the stomatogastric nervous system were found lining the pharynx and connecting to a prominent buccal ganglion. Supposedly, sensory ciliated cells in the pharynx and the gut were documented for the first time. Based on these morphological results, primary homologies of neural structures in Gnathostomulida and other Gnathifera were hypothesized and thereafter tested using parsimony. This first neurophylogeny of Gnathostomulida resulted in a topology congruent with molecular data, supporting the monophyly of Bursovaginoidea, Conophoralia, and Scleroperalia. From this topology, the evolution of the gnathostomulid nervous system was reconstructed. It suggests a specialization and diversification of cords and serotonin-like immunoreactive cell patterns from a plesiomorphic neuroarchitecture of three unsegmented nerve cords and a compact anterior brain and buccal ganglion. These plesiomorphic states resemble the nervous system of Micrognathozoa, and possibly the ancestral states of Spiralia.  相似文献   

9.
An analysis with SEM of the mouth parts of 16 species belonging to 10 genera of Gnathostomulida resulted in the following new characters and conclusions: 1) At least in the genus Haplognathia, jaw teeth that are visible by conventional light microscopy are composed of the same aggregated needle-like denticles that are found, often in large numbers, on the basal plates of many filospermoid species. 2) Other new ultrastructural tooth features include the tricuspid basal plate teeth in Problognathia minima, tripartite teeth in Austrognathia and Austrognatharia, and the clear separation, in the Gnathostomula basal plate, of a mediodorsal set of teeth from a more extensive rostroventral set. 3) Three rows of teeth, as typical for Gnathostomulidae and Austrognathiidae, are also present in the filospermoid Haplognathia filum. 4) The wide range of geographic variation in Haplognathia ruberrima is confirmed by significant differences in jaw teeth between specimens from Belize and Bermuda. 5) A compartmentalized involucrum is present in Labidgonathia longicollis. 6) A pair of lamellae addentales, until now only known from Valvognathia pogonostoma, was found in Tenuignathia rikerae, Problognathia minima, and probably also Labidognathia rikerae. 7) In all gnathostomulids, the lamella symphysis is composed of identical rods that are considered homologous with those in the mouth parts of Rotifera and Micrognathozoa.  相似文献   

10.
A newly discovered fossil cephalopod jaw apparatus that may belong to Permian representatives of the Endocochlia is described. Permorhynchus dentatus n. gen. n. sp. is established on the basis of this apparatus. The asymmetry of jaws in the Ectocochlia may be connected with the double function of the ventral jaw apparatus, and the well-developed, relatively large frontal plate of the ventral jaw should be regarded as a feature common to all representatives of ectocochlian cephalopods evolved from early Palaeozoic stock. Distinct features seen in the jaw apparatus of Upper Permian endocochlians include the pronounced beak form of both jaws and the presence of oblong wings on the ventral mandible.  相似文献   

11.
The phylogeny of selected members of the phylum Rotifera is examined based on analyses under parsimony direct optimization and Bayesian inference of phylogeny. Species of the higher metazoan lineages Acanthocephala, Micrognathozoa, Cycliophora, and potential outgroups are included to test rotiferan monophyly. The data include 74 morphological characters combined with DNA sequence data from four molecular loci, including the nuclear 18S rRNA, 28S rRNA, histone H3, and the mitochondrial cytochrome c oxidase subunit I. The combined molecular and total evidence analyses support the inclusion of Acanthocephala as a rotiferan ingroup, but do not support the inclusion of Micrognathozoa and Cycliophora. Within Rotifera, the monophyletic Monogononta is sister group to a clade consisting of Acanthocephala, Seisonidea, and Bdelloidea-for which we propose the name Hemirotifera. We also formally propose the inclusion of Acanthocephala within Rotifera, but maintaining the name Rotifera for the new expanded phylum. Within Monogononta, Gnesiotrocha and Ploima are also supported by the data. The relationships within Ploima remain unstable to parameter variation or to the method of phylogeny reconstruction and poorly supported, and the analyses showed that monophyly was questionable for the families Dicranophoridae, Notommatidae, and Brachionidae, and for the genus Proales. Otherwise, monophyly was generally supported for the represented ploimid families and genera.  相似文献   

12.
The phylum Gastrotricha includes about 700 species. They are small worm‐like organisms abundant among marine and freshwater meiobenthos. In spite of their ubiquity, diversity and relative abundance, phylogenetic relationships of these animals remain enigmatic due to the conflicting results of morphological and molecular cladistic analyses. Also unclear are the alliances within the phylum. In order to best estimate the position of Gastrotricha among the Metazoa and to shed some light on the ingroup phylogenetic relationships, small subunit (SSU) ribosomal DNA (rDNA) from 15 species of Chaetonotida (eight genera) and 28 species of Macrodasyida (26 genera) were included in an alignment of 50 metazoan taxa representing 26 phyla. Of the gastrotrich SSU rDNA sequences, eight are new and, along with published sequences represent eight families, including the five marine most speciose. Gastrotricha were resolved within a monophyletic Lophotrochozoa as part of a clade including Micrognathozoa, Rotifera and Cycliophora. The Gnathostomulida were sister to this clade. Nodal support was low for all of these relationships except the grouping of the Micrognathozoa, Rotifera and Cycliophora. Bayesian inference resolved the Gastrotricha as monophyletic with weak nodal support; the Macrodasyida were resolved as paraphyletic with many basal nodes poorly supported. Within the Chaetonotida, the monotypic Multitubulatina Neodasys was found in alliance with the macrodasyidan Urodasys while all the Paucitubulatina were found to form a single, well‐supported clade, with Musellifer as the most basal member. Among the more densely sampled Macrodasyida the Lepidodasyidae and Macrodasyidae were each found to be polyphyletic while monophyly was well supported for the Turbanellidae and Thaumastodermatidae. The congruence of our results with those of the cladistic analysis based on morphological traits provides confidence about the value of each dataset, and calls for widening of the research to include additional taxa of particular phylogenetic significance such as the Dactylopodolidae, Diuronotus, Heteroxenotrichula and Draculiciteria. The study highlights the problems in working with small species, the need for voucher specimens and the confused taxonomic status and membership of various gastrotrich families.  相似文献   

13.
In continuation of a series of papers describing new representatives of the phylum Gnathostomulida from the east coast of North America, the monotypic genus Nanognathia is presented. It is distinguished by small size, grouped epidermal inclusions on the ventral body surface, and flattened basket-type jaws with long teeth of which one is developed as a terminal tooth. Together with the structure of the reproductive system, these characteristics place Nanognathia within the suborder Scleroperalia, family Onychognathiidae.  相似文献   

14.
Rotifers are bilateral symmetric animals belonging to Protostomia. The ultrastructure of the rotiferan trophi suggests that they belong to the Gnathifera, and ultrastructural similarities between the integuments and spermatozoa as well as molecular evidence strongly suggest that rotifers and the parasitic acanthocephalans are closely related and form the clade Syndermata. Here we discuss the phylogenetic position of rotifers with regard to the gnathiferan groups. Originally, Gnathifera only included the hermaphroditic Gnathostomulida and the Syndermata. The synapomorphy supporting Gnathifera is the presence of pharyngeal hard parts such as jaws and trophi with similar ultrastructure. The newly discovered Micrognathozoa possesses such jaws and is a strong candidate for inclusion in Gnathifera because their cellular integument also has an apical intracytoplasmic lamina as in Syndermata. But Gnathifera might include other taxa. Potential candidates include the commensalistic Myzostomida and Cycliophora. Traditionally, Myzostomida has been included in the annelids but recent studies regard them either as sister group to the Acanthocephala or Cycliophora. Whether Cycliophora belongs to Gnathifera is still uncertain. Some analyses based on molecular data or total evidence point towards a close relationship between Cycliophora and Syndermata. Other cladistic studies using molecular data, morphological characters or total evidence suggest a sister group relationship between Cycliophora and Entoprocta. More molecular and morphological data and an improved sampling of taxa are obviously needed to elucidate the phylogenetic position of the rotifers and identify which phyla belong to Gnathifera.  相似文献   

15.
We analyzed the functional morphology and evolution of the long jaws found in several butterflyfishes. We used a conservative reanalysis of an existing morphological dataset to generate a phylogeny that guided our selection of seven short- and long-jawed taxa in which to investigate the functional anatomy of the head and jaws: Chaetodon xanthurus, Prognathodes falcifer (formerly Chaetodon falcifer), Chelmon rostratus, Heniochus acuminatus, Johnrandallia nigrirostris, Forcipiger flavissimus, and F. longirostris. We used manipulations of fresh, preserved, and cleared and stained specimens to develop mechanical diagrams of how the jaws might be protruded or depressed. Species differed based on the number of joints within the suspensorium. We used high-speed video analysis of five of the seven species (C. xanthurus, Chel. rostratus, H. acuminatus, F. flavissimus, and F. longirostris) to test our predictions based on the mechanical diagrams: two suspensorial joints should facilitate purely anteriorly directed protrusion of the lower jaw, one joint should allow less anterior protrusion and result in more depression of the lower jaw, and no joints in the suspensorium should constrain the lower jaw to simple ventral rotation around the jaw joint, as seen in generalized perciform fishes. We found that the longest-jawed species, F. longirostris, was able to protrude its jaws in a predominantly anterior direction and further than any other species. This was achieved with little input from cranial elevation, the principal input for other known lower jaw protruders, and is hypothesized to be facilitated by separate modifications to the sternohyoideus mechanism and to the adductor arcus palatini muscle. In F. longirostris the adductor arcus palatini muscle has fibers oriented anteroposteriorly rather than medial-laterally, as seen in most other perciforms and in the other butterflyfish studied. These fibers are oriented such that they could rotate the ventral portion of the quadrate anteriorly, thus projecting the lower jaw anteriorly. The intermediate species lack modification of the adductor arcus palatini and do not protrude their jaws as far (in the case of F. flavissimus) or in a purely anterior fashion (in the case of Chel. rostratus). The short-jawed species both exhibit only ventral rotation of the lower jaw, despite the fact that H. acuminatus is closely related to Forcipiger.  相似文献   

16.
Two species of jaw bearing Ampharetidae (Adercodon pleijeli (Mackie 1994) and Ampharete sp. B) were investigated in order to describe the microanatomy of the mouth parts and especially jaws of these enigmatic polychaetes. The animals of both studied species have 14–18 mouth tentacles that are about 30 µm in diameter each. In both species, the ventral pharyngeal organ is well developed and situated on the ventral side of the buccal cavity. It is composed of a ventral muscle bulb and investing muscles. The bulb consists of posterior and anterior parts separated by a deep median transversal groove. In both species, the triangular teeth or denticles are arranged in a single transversal row on the surface of the posterior part of the ventral bulb just in front of its posterior edge. There are 36 denticles in Adercodon pleijeli and 50 in Ampharete sp. B. The height of the denticles (6–12 µm) is similar in both species. Each tooth is composed of two main layers. The outer one (dental) is the electron‐dense sclerotized layer that covers the tooth. The inner one consists of long microvilli with a collagen matrix between them. The thickness of the dental layer ranges from 0.95 to 0.6 µm. The jaws of the studied worms may play a certain role in scraping off microfouling. The fine structure of the jaws in Ampharetidae is very similar to that of the mandibles of Dorvilleidae, the mandibles and the maxillae of Lumbrineridae, Eunicidae and Onuphidae, and the jaws of other Aciculata. This type of jaw is characterized by unlimited growth and the absence of replacement. The occurrence of jaws in a few smaller Ampharetidae is considered as an apomorphic state.  相似文献   

17.
Protrusion of the jaws during feeding is common in Batoidea (rays, skates, sawfishes, and guitarfishes), members of which possess a highly modified jaw suspension. The lesser electric ray, Narcine brasiliensis, preys primarily on polychaete annelids using a peculiar and highly derived mechanism for jaw protraction. The ray captures its prey by protruding its jaws beneath the substrate and generating subambient buccal pressure to suck worms into its mouth. Initiation of this protrusion is similar to that proposed for other batoids, in that the swing of the distal ends of the hyomandibulae is transmitted to Meckel's cartilage. A "scissor-jack" model of jaw protrusion is proposed for Narcine, in which the coupling of the upper and lower jaws, and extremely flexible symphyses, allow medial compression of the entire jaw complex. This results in a shortening of the distance between the right and left sides of the jaw arch and ventral extension of the jaws. Motion of the skeletal elements involved in this extreme jaw protrusion is convergent with that described for the wobbegong shark, Orectolobus maculatus. Narcine also exhibits asymmetrical protrusion of the jaws from the midline during processing, accomplished by unequal depression of the hyomandibulae. Lower jaw versatility is a functional motif in the batoid feeding mechanism. The pronounced jaw kinesis of N. brasiliensis is partly a function of common batoid characteristics: euhyostylic jaw suspension (decoupling the jaws from the hyoid arch) and complex and subdivided cranial musculature, affording fine motor control. However, this mechanism would not be possible without the loss of the basihyal in narcinid electric rays. The highly protrusible jaw of N. brasiliensis is a versatile and maneuverable feeding apparatus well-suited for the animal's benthic feeding lifestyle.  相似文献   

18.
A further paper dealing with West Atlantic Gnathostomulida presents the new monotypic genus Tenuignathia. The presence of a full sensorium and a cuticular bursa place the new genus within the order Bursovaginoidea, sub-order Scleroperalia; the simple jaws and pharynx, the bipartite ciliary pits as well as epithelial characters clearly suggest inclusion in the family Mesognathariidae. Found in Florida, North Carolina and Bermuda so far, Tenuignathia displays an unusually wide range of jaw length even within a narrow geographic range, which will be the subject of a separate study.  相似文献   

19.
Abstract. The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head retractors, three pairs of incomplete circular muscles, which are modified into dorso-ventral muscles, and a single pair of dorsolateral muscles. The visceral musculature consists of a complex of thick muscles associated with the mastax, as well as several sets of delicate fibers associated with the corona, stomach, gut, and cloaca, including thin longitudinal gut fibers and viscero-cloacal fibers, never before reported in other species of rotifers. The dorsal, lateral, and ventral retractor muscles and the incomplete circular muscles associated with the body wall appear to be apomorphies for the Rotifera. Muscle-revealing staining shows promise for providing additional information on previously unrecognized complexity in rotifer musculature that will be useful in functional morphology and phylogenetic analyses.  相似文献   

20.
The black carp, Mylopharyngodon piceus (Osteichthyes: Cyprinidae), crushes its snail and other molluscan prey with robust pharyngeal jaws and strong bite forces. Using gross morphology, histological sectioning, and X‐ray reconstruction of moving morphology (XROMM), we investigated structural, behavioral, and mechanical aspects of pharyngeal jaw function in black carp. Strut‐like trabeculae in their pharyngeal jaws support large, molariform teeth. The teeth occlude with a hypertrophied basioccipital process that is also reinforced with stout trabeculae. A keratinous chewing pad is firmly connected to the basioccipital process by a series of small bony projections from the base of the pedestal. The pharyngeal jaws have no bony articulations with the skull, and their position is controlled by five paired muscles and one unpaired median muscle. Black carp can crush large molluscs, so we used XROMM to compare pharyngeal jaw postures as fish crushed ceramic tubes of increasing sizes. We found that black carp increase pharyngeal jaw gape primarily by ventral translation of the jaws, with ventral rotation and lateral flaring of the jaws also increasing the space available to accommodate large prey items. A stout, robust ligament connects left and right jaws together firmly, but allows some rotation of the jaws relative to each other. Contrasting with the pharyngeal jaw mechanism of durophagous perciforms with fused left and right lower pharyngeal jaws, we hypothesize that this ligamentous connection may serve to decouple tensile and compressive forces, with the tensile forces borne by the ligament and the compressive forces transferred to the prey. J. Morphol. 276:1422–1432, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号