首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zanotti G  Guerra C 《FEBS letters》2003,534(1-3):7-10
We suggest that the three-dimensional architecture of globular proteins can be described in terms of tensegrets, i.e. structural elements that are held together through attractive and repulsive forces. Hard elements of tensegrets are represented by secondary structure elements, i.e. alpha-helices and beta-strands, while the role of elastic elements is played by attractive and repulsive atomic forces. Characteristics of tensegrets is that they can auto-assemble and that they respond to changes of tension in some part of the entire object through a deformation in another part, thus partially preserving their structure, despite their deformation. This latter property well explains both the folding process and the behavior of globular proteins under mild denaturing conditions, as revealed by the molten globule state.  相似文献   

2.
An inventory of unique local protein folds around Fe–S clusters has been derived from the analysis of protein structure databases. Nearly 50 such folds have been identified, and over 90% of them harbor low-potential [2Fe–2S]2+,+ or [4Fe–4S]2+,+ clusters. In contrast, high-potential Fe–S clusters, notwithstanding their structural diversity, occur in only three different protein folds. These observations suggest that the extant population of Fe–S protein folds has to a large extent been shaped in the reducing iron- and sulfur-rich environment that is believed to have predominated on this planet until approximately two billion years ago. High-potential active sites are then surmised to be rarer because they emerged later, in a more oxidizing biosphere, in conditions where iron and sulfide had become poorly available, Fe–S clusters were less stable, and in addition faced competition from heme iron and copper active sites. Among the low-potential Fe–S active sites, protein folds hosting [4Fe–4S]2+,+ clusters outnumber those with [2Fe–2S]2+,+ ones by a factor of 3 at least. This is in keeping with the higher chemical stability and versatility of the tetranuclear clusters, compared with the binuclear ones. It is therefore suggested that, at least while novel Fe–S sites are evolving within proteins, the intrinsic chemical stability of the inorganic moiety may be more important than the stabilizing effect of the polypeptide chain. The discovery rate of novel Fe–S-containing protein folds underwent a sharp increase around 1995, and has remained stable to this day. The current trend suggests that the mapping of the Fe–S fold space is not near completion, in agreement with predictions made for protein folds in general. Altogether, the data collected and analyzed here suggest that the extant structural landscape of Fe–S proteins has been shaped to a large extent by primeval geochemical conditions on one hand, and iron–sulfur chemistry on the other.  相似文献   

3.
The ATP-binding cassette (ABC) transporters are a large family of proteins responsible for the translocation of a variety of compounds across the membranes of both prokaryotes and eukaryotes. The inter-protein and intra-protein interactions in these traffic ATPases are still only poorly understood. In the present study we describe, for the first time, an extensive yeast two-hybrid (Y2H)-based analysis of the interactions of the cytoplasmic loops of the yeast pleiotropic drug resistance (Pdr) protein, Pdr5p, an ABC transporter of Saccharomyces cerevisiae. Four of the major cytosolic loops that have been predicted for this protein [including the two nucleotide-binding domain (NBD)-containing loops and the cytosolic C-terminal region] were subjected to an extensive inter-domain interaction study in addition to being used as baits to identify potential interacting proteins within the cell using the Y2H system. Results of these studies have revealed that the first cytosolic loop (CL1) – containing the first NBD domain – and also the C-terminal region of Pdr5p interact with several candidate proteins. The possibility of an interaction between the CL1 loops of two neighboring Pdr5p molecules was also indicated, which could possibly have implications for dimerization of this protein. Electronic Publication  相似文献   

4.
5.
When a small change, either contraction or dilation, of the surface area of a digestive tube coincides with a considerable change in internal volume, this can be considered an effective influence of surface on volume. This study discusses the effects of anatomical differences between those types of digestive tracts where the longitudinal musculature is reduced to small bands, the taeniae, and those where such differentiations are not found. With the help of a geometric model the efficiency of transport (eta = net volume expelled aborally / volume of the tube) from haustra in tubes with two, three, four, and six taeniae was determined. It could be shown that efficiency of transport from haustra decreases when the number of taeniae increases. The second model applies the program "Surface Evolver" (author K.A. Brakke). The program is applied to investigate the relationships between changes in surface area of tubes with different numbers of taeniae (0, 2, 3, 4, and 6) and the respective changes of the internal volumes of tubes. Both haustra formation and formation of semilunar folds between haustra are considered. Tubes with two or three taeniae reduce their internal volume more efficiently than all others, namely, with a relatively small reduction of the surface area and contraction of the Tunica muscularis at a relatively low rate. In addition to chemical and mechanical decomposition of digesta the gastrointestinal tube has three tasks: propagation, storage, and retention of digesta. A tube without taeniae, i.e., with a complete longitudinal muscular layer, propagates contents with peristaltic movements. Storage can take place in areas of the tract with a dilated cross-section. Finally, folds can retain digesta. In many sections of the gastrointestinal tract folds are differentiated as permanent structures. However, folds formed with relatively little contraction of the musculature, i.e., little change in the surface area, represent an effective means of retention and thus of flow regulation. Tubes with taeniae and semilunar folds are adaptations for this effective type of regulation of digesta transit through the tract.  相似文献   

6.
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein–protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.  相似文献   

7.
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing.  相似文献   

8.
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes–the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the “energy funnel” principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a sig- nificant change in its structure and spectral characteristics. Such conformational changes open the possibility for pro- tein–protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluores- cence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein–pro- tein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.  相似文献   

9.
The analysis of protein–protein interactions is important for developing a better understanding of the functional annotations of proteins that are involved in various biochemical reactions in vivo. The discovery that a protein with an unknown function binds to a protein with a known function could provide a significant clue to the cellular pathway concerning the unknown protein. Therefore, information on protein–protein interactions obtained by the comprehensive analysis of all gene products is available for the construction of interactive networks consisting of individual protein–protein interactions, which, in turn, permit elaborate biological phenomena to be understood. Systems for detecting protein–protein interactions in vitro and in vivo have been developed, and have been modified to compensate for limitations. Using these novel approaches, comprehensive and reliable information on protein–protein interactions can be determined. Systems that permit this to be achieved are described in this review.K. Kuroda, M. Kato and J. Mima contributed equally to this work.  相似文献   

10.
11.
The structural protein, δ-crystallin, has been purified and crystallized from adult turkey lens. The crystals are orthorhombic and normally belong to space group P21212 with unit cell dimensions a = 99.9(2) A?, b = 133.4(3) A? and c = 69.1(2) A?. This corresponds to two molecules of molecular weight approximately 200,000 per unit cell. A second crystal form has also been found in which b and c increase to 135.4(3) Å and 140.0(3) Å. respectively, indicating four molecules per unit cell.  相似文献   

12.
13.
14.
A subset of non-steroidal anti-inflammatory drugs modulates the γ cleavage site in the amyloid precursor protein (APP) to selectively reduce production of Aβ42. It is unclear precisely how these γ-secretase modulators (GSMs) act to preferentially spare Aβ40 production as well as Notch processing and signaling. In an effort to determine the substrate requirements in NSAID/GSM activity, we determined the effects of sulindac sulfide and flurbiprofen on γ-cleavage of artificial constructs containing several γ-secretase substrates. Using FLAG-tagged constructs that expressed extracellularly truncated APP, Notch-1, or CD44, we found that these substrates have different sensitivities to sulindac sulfide. γ-Secretase cleavage of APP was altered by sulindac sulfide, but CD44 and Notch-1 were either insensitive or only minimally altered by this compound. Using chimeric APP constructs, we observed that the transmembrane domain (TMD) of APP played a pivotal role in determining drug sensitivity. Substituting the APP TMD with that of APLP2 retained the sensitivity to γ-cleavage modulation, but replacing TMDs from Notch-1 or ErbB4 rendered the resultant molecules insensitive to drug treatment. Specifically, the GXXXG motif within APP appeared to be critical to GSM activity. Consequently, the modulatory effects on γ-cleavage appears to be substrate-dependent. We hypothesize that the substrate present in the γ-secretase complex influences the conformation of the complex so that the binding site of GSMs is either stabilized or less favorable to influence the cleavage of the respective substrates.  相似文献   

15.
In studies of green fluorescence protein (GFP) or other proteins with the use of GFP as a marker, the fluorescence of GFP is for the most part related directly to the nativity of its structure. Naturally, such a relation does exist since the chromophore of this protein is formed autocatalytically only just after GFP acquires its native structure. However, the fluorescence method may not yield reliable information on protein structure when studying renaturation and denaturation of this protein (with the formed chromophore). Using proteolysis, denaturant gradient gel electrophoresis and circular dichroism, we demonstrate herein that at major disturbances of the native structure of protein GFP-cycle3 the intensity of fluorescence of its chromophore can change insignificantly. In other words, the chromophore fluorescence does not reliably mirror alterations in protein structure. Since the main conclusions of this study are especially qualitative, it can be suggested that during renaturation/denaturation of wild-type GFP and its “multicolored” mutants their fluorescence is also not always associated with the changes in the structure of these proteins.  相似文献   

16.
The native prion protein (PrP) has a two domain structure, with a globular folded α-helical C-terminal domain and a flexible extended N-terminal region. The latter can selectively bind Cu2+ via four His residues in the octarepeat (OR) region, as well as two sites (His96 and His111) outside this region. In the disease state, the folded C-terminal domain of PrP undergoes a conformational change, forming amorphous aggregates high in β-sheet content. Cu2+ bound to the ORs can be redox active and has been shown to induce cleavage within the OR region, a process requiring conserved Trp residues. Using computational modeling, we have observed that electron transfer from Trp residues to copper can be favorable. These models also reveal that an indole-based radical cation or Cu+ can initiate reactions leading to protein backbone cleavage. We have also demonstrated, by molecular dynamics simulations, that Cu2+ binding to the His96 and His111 residues in the remaining PrP N-terminal fragment can induce localized β-sheet structure, allowing us to suggest a potential mechanism for the initiation of β-sheet misfolding in the C-terminal domain by Cu2+.
Hans J. VogelEmail:
  相似文献   

17.
18.
Is loss of function of the prion protein the cause of prion disorders?   总被引:4,自引:0,他引:4  
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that involve misfolding of the prion protein. Recent studies have provided evidence that normal prion protein might have a physiological function in neuroprotective signaling, suggesting that loss of prion protein activity might contribute to the pathogenesis of prion disease. However, studies using knockout animals do not support the loss-of-function hypothesis and argue that prion neurodegeneration might be associated with a gain of a toxic activity by the misfolded prion protein. Thus, the mechanism of neurodegeneration in spongiform encephalopathies remains enigmatic.  相似文献   

19.
Fibrillins are nuclear-encoded, plastid proteins associated with chromoplast fibrils and chloroplast plastoglobules, thylakoids, photosynthetic antenna complexes, and stroma. There are 12 sub-families of fibrillins. However, only three of these sub-families have been characterized genetically or functionally. We review evidence indicating that fibrillins are involved in plastoglobule structural development, chromoplast pigment accumulation, hormonal responses, protection of the photosynthetic apparatus from photodamage, and plant resistance to a range of biotic and abiotic stresses. The area of fibrillin research has substantial growth potential and will contribute to better understanding of mechanisms of plant stress tolerance and plastid structure and function.  相似文献   

20.
Serpins are remarkable and unique proteins in being able to spontaneously fold into a metastable conformation without the aid of a chaperone or prodomain. This metastable conformation is essential for inhibition of proteinases, so that massive serpin conformational change, driven by the favorable energetics of relaxation of the metastable conformation to the more stable one, can kinetically trap the proteinase-serpin acylenzyme intermediate. Failure to direct folding to the metastable conformation would lead to inactive, latent serpin. How serpins fold into such a metastable state is unknown. Using the ability of component peptides from the serpin α(1)PI to associate, we have now elucidated the pathway by which this serpin efficiently folds into its metastable state. In addition we have established the likely structure of the polymerogenic intermediate of the Z variant of α(1)PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号