首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve chemical compounds have been selected for the European NewGeneris study on the basis of their potential to damage DNA, in order to establish adequate and reliable biomarkers of exposure. These genotoxic chemicals include heterocyclic amines, organochlorines, polycyclic aromatic hydrocarbons, mycotoxins, lipid peroxidation products and alcohol. Damage in somatic cells such as lymphocytes could give rise to cancer, while damage in germ cells could not only give rise to cancer but also to heritable defects. The alkaline Comet assay, with and without metabolic activation, as well as the neutral Comet assay were used to assess DNA integrity in spermatozoa and lymphocytes after in vitro treatment with low, middle and high doses of each chemical. DNA-reactive aldehydes generated by lipid peroxidation, food mutagens such as heterocyclic amines, nitrosamine and benzo[a]pyrene produced the highest amounts of DNA damage, even without metabolic activation. Damage seen with the neutral Comet assay - detecting primarily double-strand breaks - was lower than with the alkaline assay. In general, there was increased damage in the spermatozoa by comparison with the lymphocytes, with altered slopes in the dose-response curves. The Comet assay with sperm was generally very sensitive in assessing genotoxic damage, with the Comet parameters being good biomarkers of induced DNA damage. Establishing reliable biomarkers of exposure for the evaluation of dietary/environmental carcinogens is of utmost importance to protect our health and the health of our offspring.  相似文献   

2.
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans. IITR Communication No. 2656  相似文献   

3.
Modifications to the alkaline Comet assay by using lesion-specific endonucleases, such as formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (ENDOIII, also known as Nth), can detect DNA bases with oxidative damage. This modified assay can be used to assess the genotoxic/carcinogenic potential of environmental chemicals. The goal of this study was to validate the ability of this modified assay to detect oxidative stress-induced genotoxicity in Drosophila melanogaster (Oregon R(+)). In this study, we used three well known chemical oxidative stress inducers: hydrogen peroxide (H(2)O(2)), cadmium chloride (CdCl(2)) and copper sulfate (CuSO(4)). Third instar larvae of D. melanogaster were fed various concentrations of the test chemicals (50-200μM) mixed with a standard Drosophila food for 24h. Alkaline Comet assays with and without the FPG and ENDOIII enzymes were performed with midgut cells that were isolated from the control and treated larvae. Our results show a concentration-dependent increase (p<0.05-0.001) in the migration of DNA from the treated larvae. ENDOIII treatment detected more oxidative DNA damage (specifically pyrimidine damage) in the H(2)O(2) exposed larvae compared to FPG or no enzyme treatment (buffer only). In contrast, FPG treatment detected more oxidative DNA damage (specifically purine damage) in CuSO(4) exposed larvae compared to ENDOIII. Although previously reported to be a potent genotoxic agent, CdCl(2) did not induce more oxidative DNA damage than the other test chemicals. Our results show that the modified alkaline Comet assay can be used to detect oxidative stress-induced DNA damage in D. melanogaster and thus may be applicable for in vivo genotoxic assessments of environmental chemicals.  相似文献   

4.
There are few studies on the biological activity of aminohydroxy derivates of 1,4-naphthoquinone (1,4-NQ) on prokaryotic and eukaryotic cells. We determined the mutagenic activity of 5-amino-8-hydroxy-1,4-naphthoquinone (ANQ) and 5-amino-2,8-dihydroxy-1,4-naphthoquinone (ANQ-OH) as compared to the unsubstituted 1,4-NQ in Salmonella/microsome assay. Potential mutagenic and recombinogenic effects and cytotoxicity were analyzed in haploid and diploid cultures of the yeast Saccharomyces cerevisiae. In Salmonella/microsome assay, 1,4-NQ was not mutagenic, whereas aminohydroxynaphthoquinones were weakly mutagenic in TA98 and TA102 strains. In haploid yeast in stationary growth phase (STAT), mutagenic response was only observed for the hom3 locus at the highest dose. In diploid yeast, aminohydroxynaphthoquinones did not induce any recombinogenic events, but 1,4-NQ was shown to be a recombinogenic agent. These results suggest that aminohydroxynaphthoquinones are weak mutagenic agents only in prokaryotic cells. The cytotoxicity of 1,4-NQ in yeast stationary cells was more significant in diploid cells as compared to that observed in haploid cells. However, ANQ and ANQOH were slightly cytotoxic in all treatments. Genotoxicity of these naphthoquinone compounds was also determined in V79 Chinese hamster lung fibroblast cells using standard Comet, as well as modified Comet assay with the bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (ENDOIII). Both 1,4-NQ and ANQ induced pronounced DNA damage in the standard Comet assay. The genotoxic effect of ANQ-OH was observed only at the highest dose. In presence of metabolic activation all substances showed genotoxic effects on V79 cells. Post-treatment of V79 cells with ENDOIII and FPG proteins did not have a significant effect on ANQ-OH-induced oxidative DNA damage as compared to standard alkaline Comet assay. However, all naphthoquinones were genotoxic in V79 cells in the presence of metabolic activation and post-treatment with enzymes, indicating that all compounds induced oxidative DNA damage in V79 cells. Our data suggest that aminohydroxynaphthoquinone pro-oxidant activity, together with their capability of DNA intercalation, have an important role in mutagenic and genotoxic activities.  相似文献   

5.
The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE) assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1) to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2) to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3) to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29%) of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.  相似文献   

6.
Gichner T 《Mutation research》2003,535(2):187-193
We have measured the level of DNA damage induced by treating roots (cellular Comet assay) and isolated root nuclei (acellular Comet assay) of catalase-deficient (CAT1AS) and wild-type (SR1) tobacco with the promutagen o-phenylenediamine (o-PDA) and the direct acting genotoxic agents hydrogen peroxide and ethyl methanesulphonate (EMS). The roots of CAT1AS have about 60% less catalase activity compared to the roots of SR1. The promutagen o-PDA applied on tobacco roots induced significantly higher levels of DNA damage in the CAT1AS transgenic line than in SR1, while after application of o-PDA on isolated root nuclei, no DNA damage could be detected. In the catalase-deficient line CAT1AS about six-fold lower concentrations of H(2)O(2) are sufficient to induce the same levels of DNA damage as in SR1. By contrast, after treatment of isolated root nuclei with H(2)O(2) no difference in the induced levels of DNA damage was observed between CAT1AS and SR1. The DNA damaging effect of EMS was not affected by the presence of catalase in the tobacco roots and the levels of DNA damage measured by the cellular and acellular assay were similar.Comparing the effects of genotoxic agents in both the cellular and acellular Comet assays may help to elucidate their mechanism of action. Differences in both systems may reveal the participation of scavengers and of repair and metabolic enzymes on the activity of the genotoxic agent and the role of the cell wall in preventing the agent from reacting with nuclear DNA.  相似文献   

7.
A new proline-rich polypeptide (PRP-1) has been earlier shown to possess a broad spectrum of biological activities and seems to be a potential medicine. The potential genotoxic properties of PRP-1 and protective effect of PRP-1 against genotoxic action of Mitomycin C (MMC) were analyzed in details in the present work. DNA and chromosome damages were studied in KCL-22 cell line of human myeloid leukemia by the Comet assay and micronucleus induction test, respectively. The results suggest that DNA damages are, at least partly, transient and reparable. PRP-1 at the doses 0.5–2.0 μg/ml does not possess genotoxic activity. Moreover, this peptide expresses both preventive and therapeutic effects against MMC-induced DNA damage. Pre-treatment of cells with PRP-1 also prevents the appearance of daughter cells bearing as heavy MMC-induced DNA/chromosome damages as MNs. Thus, the polypeptide studied is able to protect the cells from genotoxic action of MMC. This defense includes not only DNA but also heritable chromosome damage in post-mitotic cells. Possible mechanisms of PRP-1 protective action are discussed.  相似文献   

8.
A new proline-rich polypeptide (PRP-1) has been earlier shown to possess a broad spectrum of biological activities and seems to be a potential medicine. The potential genotoxic properties of PRP-1 and protective effect of PRP-1 against genotoxic action of Mitomycin C (MMC) were analyzed in details in the present work. DNA and chromosome damages were studied in KCL-22 cell line of human myeloid leukemia by the Comet assay and micronucleus induction test, respectively. The results suggest that DNA damages are, at least partly, transient and reparable. PRP-1 at the doses 0.5–2.0 l g/ml does not possess genotoxic activity. Moreover, this peptide expresses both preventive and therapeutic effects against MMCinduced DNA damage. Pre-treatment of cells with PRP-1 also prevents the appearance of daughter cells bearing as heavy MMC-induced DNA/chromosome damages as MNs. Thus, the polypeptide studied is able to protect the cells from genotoxic action of MMC. This defense includes not only DNA but also heritable chromosome damage in postmitotic cells. Possible mechanisms of PRP-1 protective action are discussed.  相似文献   

9.
Oxidative stress and resulting lipid peroxidation are important risk factors for dietary-associated colon cancer. To get a better understanding of the underlying molecular mechanisms, we need to characterise the risk potential of the key compounds, which cause DNA damage in cancer-relevant genes and especially in human target cells. Here, we investigated the genotoxic effects of 4-hydroxy-2-nonenal (HNE) and hydrogen peroxide (H(2)O(2)) in human colon cells (LT97). LT97 is a recently established cell line from a differentiated microadenoma and represents cells from frequent preneoplastic lesions of the colon. The genomic characterisation of LT97 was performed with 24-colour FISH. Genotoxicity was determined with single cell microgelelectrophoresis (Comet assay). Comet FISH was used to study the sensitivity of TP53-a crucial target gene for the transition of adenoma to carcinoma-towards HNE. Expression of glutathione S-transferases (GST), which deactivates HNE, was determined as GST activity and GSTP1 protein levels. LT97 cells were compared to primary human colon cells and to a differentiated clone of HT29. Karyotyping revealed that the LT97 cell line had a stable karyotype with only two clones, each containing a translocation t(7;17) and one aberrant chromosome 1. The Comet assay experiments showed that both HNE and H(2)O(2) were clearly genotoxic in the different human colon cells. HNE was more genotoxic in LT97 than in HT29clone19A and primary human colon cells. After HNE incubation, TP53 migrated more efficiently into the comet tail than the global DNA, which suggests a higher susceptibility of the TP53 gene to HNE. GST expression was significantly lower in LT97 than in HT29clone19A cells, which could explain the higher genotoxicity of HNE in the colon adenoma cells. In conclusion, the LT97 is a relevant model for studying genotoxicity of colon cancer risk factors since colon adenoma are common preneoplastic lesions occurring in advanced age.  相似文献   

10.
Chromobacterium violaceum is a Gram (-) bacteria found in water samples and soils from tropical and subtropical regions of the world. Violacein, the major pigment produced by these bacteria, has been shown to have antibiotic, antitumoral and trypanocidal activities. In the present work, the genotoxicity of violacein was investigated in four different cell lines by using the alkaline Comet assay and in VERO cells using the Micronucleus test. In the alkaline Comet assay, violacein, when tested at concentrations ranging from 0.19 to 1.5 microM, did not induce a significant increase in DNA damage in HEp-2 and MA104 cells. However, violacein was positive for DNA damage in FRhK-4 cells and for both DNA damage and micronuclei in VERO cells, in a concentration-response relationship. The results of this study indicated that violacein is genotoxic in VERO and FRhK-4 cells. These findings contribute to a comprehensive evaluation of the pharmacological potential of violacein.  相似文献   

11.
12.
There are few studies on the biological activity of aminohydroxy derivates of 1,4-naphthoquinone (1,4-NQ) on prokaryotic and eukaryotic cells. We determined the mutagenic activity of 5-amino-8-hydroxy-1,4-naphthoquinone (ANQ) and 5-amino-2,8-dihydroxy-1,4-naphthoquinone (ANQ-OH) as compared to the unsubstituted 1,4-NQ in Salmonella/microsome assay. Potential mutagenic and recombinogenic effects and cytotoxicity were analyzed in haploid and diploid cultures of the yeast Saccharomyces cerevisiae. In Salmonella/microsome assay, 1,4-NQ was not mutagenic, whereas aminohydroxynaphthoquinones were weakly mutagenic in TA98 and TA102 strains. In haploid yeast in stationary growth phase (STAT), mutagenic response was only observed for the hom3 locus at the highest dose. In diploid yeast, aminohydroxynaphthoquinones did not induce any recombinogenic events, but 1,4-NQ was shown to be a recombinogenic agent. These results suggest that aminohydroxynaphthoquinones are weak mutagenic agents only in prokaryotic cells. The cytotoxicity of 1,4-NQ in yeast stationary cells was more significant in diploid cells as compared to that observed in haploid cells. However, ANQ and ANQOH were slightly cytotoxic in all treatments. Genotoxicity of these naphthoquinone compounds was also determined in V79 Chinese hamster lung fibroblast cells using standard Comet, as well as modified Comet assay with the bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (ENDOIII). Both 1,4-NQ and ANQ induced pronounced DNA damage in the standard Comet assay. The genotoxic effect of ANQ-OH was observed only at the highest dose. In presence of metabolic activation all substances showed genotoxic effects on V79 cells. Post-treatment of V79 cells with ENDOIII and FPG proteins did not have a significant effect on ANQ-OH-induced oxidative DNA damage as compared to standard alkaline Comet assay. However, all naphthoquinones were genotoxic in V79 cells in the presence of metabolic activation and post-treatment with enzymes, indicating that all compounds induced oxidative DNA damage in V79 cells. Our data suggest that aminohydroxynaphthoquinone pro-oxidant activity, together with their capability of DNA intercalation, have an important role in mutagenic and genotoxic activities.  相似文献   

13.
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH>13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague-Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3-6 and 22-26h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology. Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.  相似文献   

14.
Biomonitoring of human populations exposed to potential mutagens or carcinogens can provide an early detection system for the initiation of cell disregulation in the development of cancer. In recent years, the Comet assay, also known as a “single cell gel” (SCG) electrophoresis assay, has become an important tool for assessing DNA damage in exposed populations. This is the method of choice for population-based studies of environmental and occupational exposure to air pollutants, metals, pesticides, radiation, and other xenobiotics as we show in this review. To appreciate the role of the Comet assay in the field of biomonitoring, we review data from 122 studies that employed the assay. These studies evaluated environmental versus occupational exposures and the levels of DNA damage in cells of individuals exposed in each case. Our review of the literature reveals the importance of the need to establish standard methodological conditions that affect unwinding and electrophoresis times and tail values (tail length, tail DNA, tail moment), with the goal of being able to compare data collected in different laboratories throughout the world. The Comet assay is susceptible to subtle artifacts of manipulation depending on the type and timing of sampling performed. Therefore, in the reporting of DNA damage detected by the Comet assay, the context of how the DNA damage was created also needs to be reported and considered in the interpretation of Comet assay results. The success of the Comet assay is reflected by its use over the past 20 years in the field of biomonitoring, and by the increasing number of studies that continue to report its use. As the shortcomings of the assay are identified and considered in the interpretation of DNA damage detection, the Comet assay will continue to provide improved reliability as a biomarker in human biomonitoring studies.  相似文献   

15.
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH > 13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague–Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3–6 and 22–26 h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20 mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology.Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40 min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.  相似文献   

16.
The potential application of the Comet assay for monitoring genotoxicity in the freshwater mussel Dreissena polymorpha was explored and a preliminary investigation was undertaken of the baseline levels of DNA damage in mussel haemocytes of animals kept at different temperatures. In addition, in vitro cell sensitivity against genotoxicants was assessed in relation to increasing temperatures. The mussels were kept at four different constant temperatures (4, 18, 28 and 37 degrees C) for 15 h. The haemocytes withdrawn were treated in vitro with melphalan, as a model genotoxic compound, or sodium hypochlorite, a common water disinfectant capable of producing mutagenic/carcinogenic by-products, at the established temperatures for 1h. The data obtained in vivo, in cells directly withdrawn from the mussels showed a significant (P<0.001, Student's t test) inter-individual variability, probably due to genetic and epigenetic factors and an increasing amount of DNA damage at increasing temperature. Mussel haemocytes showed a clear dose-response effect after in vitro melphalan treatment. Hypochlorite treatment also significantly increased DNA migration: the damage was temperature dependent, with a similar increase at 4 and 28 degrees C and a minimum level at 18 degrees C. This study demonstrates the potential application of the Comet assay to haemocytes of D. polymorpha. However, these findings suggest that temperature could alter both DNA damage baseline levels in untreated animals and cell sensitivity towards environmental pollutants in in vitro conditions. Therefore, more information is needed about seasonal variations and the natural background levels of DNA damage in mussels living in the wild, before they are used for the monitoring of genotoxic effects in aquatic environments.  相似文献   

17.
Wu M  Xing G  Qi X  Feng C  Liu M  Gong L  Luan Y  Ren J 《Mutation research》2012,741(1-2):65-69
Until recently, knowledge about the genotoxicity of roxarsone in vitro or in vivo was limited. This study assessed the genotoxicity of roxarsone in an in vitro system. Roxarsone was tested for potential genotoxicity on V79 cells by a Comet assay and a micronucleus (MN) test, exposing the cells to roxarsone (1-500 μM) and to sodium arsenite (NaAsO?, 20 μM) solutions for 3-48 h. Roxarsone was found to be cytotoxic when assessed with a commercial cell counting kit (CCK-8) used to evaluate cell viability, and moderately genotoxic in the Comet assay and micronucleus test used to assess DNA damage. The Comet metrics (percentages TDNA, TL, TM) increased significantly in a time- and concentration-dependent manner in roxarsone-treated samples compared with PBS controls (P<0.05), while the data from samples treated with 20 μM NaAsO? were comparable to those from 500 μM roxarsone-treated samples. The MN frequency of V79 cells treated with roxarsone was higher than that in the negative control but lower than the frequency in cells treated with 20 μM NaAsO?. A dose- and time-dependent response in MN induction was observed at 10, 50, 100 and 500 μM doses of roxarsone after 12-48 h exposure time. The DNA damage in V79 cells treated with 500 μM roxarsone was similar to cells exposed to 20 μM NaAsO?. The uptake of cells was correlated with the DNA damage caused by roxarsone. This investigation depicts the genotoxic potentials of roxarsone to V79 cells, which could lead to further advanced studies on the genotoxicity of roxarsone.  相似文献   

18.
Use of Comet-FISH in the study of DNA damage and repair: review   总被引:1,自引:0,他引:1  
The Comet-FISH technique is a useful tool to detect overall and region-specific DNA damage and repair in individual cells. It combines two well-established methods, the Comet assay (single cell gel electrophoresis) and the technique of fluorescence in situ hybridization (FISH). Whereas the Comet assay allows separating fragmented from non-fragmented DNA, FISH helps to detect specifically labelled DNA sequences of interest, including whole chromosomes. Thus the combination of both techniques has been applied in particular for detection of site-specific breaks in DNA regions which are relevant for development of different diseases. This paper reviews the relevant literature and presents three examples on how Comet-FISH was used for studying the induction of DNA damage by genotoxic compounds related to oxidative stress in colon cancer-relevant genes (TP53, APC, KRAS) of a colon adenoma cell line. The accumulated evidence on relative sensitivity of these genes in comparison to global damage allows a more definite conclusion on the possible contribution of the genotoxic factors during colorectal carcinogenesis. Telomere fragility was compared in different cell lines treated with cytostatic agents, and revealed new patterns of biological activities through the drugs and different sensitivities of the cell lines that were found to be associated with their tumour origin. A third example relates to measuring repair of specific gene regions using Comet-FISH, a method that can be developed to biomarker application. Taken together, available data suggests that Comet-FISH helps to get further insights into sensitivity of specific DNA regions and consequently in mechanisms of carcinogenesis. Although the nature of the measured Comet-FISH endpoint precludes us from stating basically that damage and repair are occurring within the specific gene, it is at least possible to evaluate whether the damage and repair are occurring within the vicinity of the gene of interest.  相似文献   

19.
20.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号