首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using the model presented in part I, the measured time and spacial variations of process variables were simulated with satisfactory accuracy. Especially the experimentally found minima of the longitudinal dissolved oxygen concentration profiles in the substrate limiting growth range, which are caused by the transition from oxygen transfer limited to substrate limited growth along the tower, can be simulated with great accuracy.Symbols L length - M mass - T time - K temperature - MM mole mass - a Specific gas/liquid interfacial area with regard to the liquid volume in the tower (L–1) - DSR Substrate feed rate (ML–3T–1) - KO Saturation constant of Monod kinetics with regard to oxygen (ML–3) - KS Saturation constant of Monod kinetics with regard to the substrate (ML–3) - KST Constant - KL Mass transfer coefficient (LT–1) - kLa Volumetric mass transfer coefficient (T–1) - kLaE Volumetric mass transfer coefficient at the entrance (T–1) - kLa Volumetric mass transfer coefficient at large distances from the entrance (T–1) - kLa 0 Volumetric mass transfer coefficient in the absence of substrate (ethanol) (T–1) - LR Gas-liquid layer height in the tower (L) - LR Height of the loop (L) - - OB Dissolved oxygen concentration in the loop liquid (ML–3) - OF Dissolved oxygen concentration in the tower liquid (ML–3) - O F * Saturation value of OF (ML–3) - OTR Oxygen transfer rate (ML–3T–1) - P Pressure - Oxygen transfer rate (ML–3T) - SB Substrate concentration in the loop liquid (ML–3) - SD Substrate concentration at which kLa=2 kLa 0 (ML–3) - SF Substrate concentration in the tower liquid (ML–3) - T Absolute temperature - t Time (T) - uGo Superficial gas velocity in the tower - VR Reactor volume (L3) - VG Volumetric gas flow rate in the tower (L3T–1) - VB Volumetric liquid flow rate in the loop (L3T–1) - VF Volumetric liquid flow rate in the tower (L3T–3) - Vu Liquid recycling rate (L3T–1) - XB Biomass concentration in the loop liquid (ML–3) - XF Biomass concentration in the tower liquid (ML–3) - x Longitudinal coordinate in the tower (L) - x* Longitudinal coordinate in the loop (L) - xOG O2 mole fraction in the gas phase - YX/O Yield coefficient of biomass with regard to oxygen - YX/S Yield coefficient of biomass with regard to substrate - z=x/LR Dimensionless longitudinal coordinate in the tower - z*=x*/LB Dimensionless longitudinal coordinate in the loop - Constant (LR is the distance from the aerator on which kL a is space dependent) - Liquid recirculation ratio - G Mean relative gas holdup in the tower - exp Experimentally determined (T–1) - max Maximum specific growth rate (T–1) - F Liquid density (ML–3) - A At the exit - E At the inlet  相似文献   

2.
Summary Equations are described which relate nutrient feed rate to specific microbial growth rate in fed batch culture. Fed batch cultures are classified into three types: 1) those allowing constant specific microbial growth rate, 2) those in which the rate of change of flow rate is constant and 3) those in which the nutrient flow rate is constant. The basic properties of these three types are described.Symbols F medium flow rate, L3 T–1 - F o medium flow rate at zero time, L3 T–1 - g rate of change of flow rate with time, L3 T–2 - K v volume constant, being the total cell weight at zero time divided by the product of the yield coefficient and growth-limiting substrate concentration in the feed, L3 - s r growth limiting substrate concentration in the feed, ML–3 - V volume of liquid in the growth vessel, L3 - V f volume of medium fed to the growth vessel, L3 - V o volume of liquid in the growth vessel at zero time, L3 - X total weight of cells, M - x concentration of cells, ML–3 - X g total weight of cells grown, M - X o total weight of cells at zero time, M - Y yield coefficient, weight of cells grown per unit weight of growth-limiting substrate - specific microbial growth rate, T–1  相似文献   

3.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

4.
The removal of dichloromethane from waste gases in a biological trickling filter was studied experimentally as well as theoretically within the concentration range of 0–10,000 ppm. A stable dichloromethane elimination performance was achieved during two years of operation, while the start-up of the system only amounted to several weeks at constant inlet concentrations. The trickling filter system was operated co-currently as well as counter-currently.However, experimental and theoretical results revealed that the relative flow direction of the mobile phases did not significantly affect the elimination performance. Moreover, it was found that the gas-liquid mass-transfer resistance in the trickling filter bed applied was negligible, which leaves the biological process inside the biofilm to be the rate limiting step.A simplified model was developed, the Uniform-Concentration-Model, which showed to predict the filter performance close to the numerical solutions of the model equations. This model gives an analytical expression for the degree of conversion and can thus be easily applied in practice.The dichloromethane eliminating performance of the trickling filter described in this paper, is reflected by a maximum dichloromethane elimination capacity EC max=157 g/(m3 · h) and a critical liquid concentration C lcr=45 g/m3 at a superficial liquid velocity of 3.6 m/h, inpendent of the gas velocity and temperature.List of Symbols a s m2/m3 specific area - a w m2/m3 specific wetted area - A m2 cross-sectional area - C g g/m3 gas phase concentration - C go g/m3 inlet gas phase concentration - C gocr g/m3 critical gas phase concentration - C g * Cg/Cgo dimensionless gas concentration - C l g/m3 liquid concentration - C lcr g/m3 critical liquid concentration - C lcr * mClcr/Cgo dimensionless critical concentration - c li g/m3 substrate concentration at liquid-biofilm interface - C l * mCl/Cgo dimensionless liquid concentration - C o g/m3 oxygen concentration inside the biofilm - C oi g/m3 oxygen concentration at liquid-biofilm interface - Cs g/m3 substrate concentration inside the biofilm - C si g/m3 substrate concentration at liquid-biofilm interface - D eff m2/h effective diffusion coefficient in the biofilm - D o m2/h effective diffusion coefficient for oxygen in the biolayer - E mug/ul extraction factor - E act kJ/mol activation energy for the biological reaction - EC g/(m3· h) K o a w : elimination capacity, or the amount of substrate degraded per unit of reactor volume and time - EC max g/(m3 · h) K o aw: maximum elimination capacity - f degree of conversion - h m coordinate in height - H m height of the packed bed - K 0 g/(m3 · h) maxXb/Y zeroth order reaction defined per unit of biofilm volume - k og m/h overall gas phase mass transfer coefficient - K * dimensionless constant given by Eq. (A.5) - K l * dimensionless constant given by Eq. (A.6) - K 2 * dimensionless constant given by Eq. (A.6) - m C g /Cl gas liquid distribution coefficient - N g/(m2 · h) liquid-biofilm interfacial flux of substrate - N og kogawH/ug number of gas phase transfer units - N r ko aw H/ug Cgo number of reaction units - OL g/(m3· h) u g C go /H organic load - r s g/(m3 ·h) zeroth order substrate degradation rate given by Eq. (1) - R s g/(g TSS ·h) specific activity - T K absolute temperature - u g m/h superficial gas velocity - u t m/h superficial liquid velocity - X b g TSS/m3 biomass concentration inside biofilm - X s g TSS/m3 liquid suspended biomass concentration - x m coordinate inside the biofilm - Y g TSS/(gDCM) yield coefficient Greek Symbols dimensionless parameter given by Eq. (2) - m averaged biofilm thickness - biofilm effectiveness factor given by Eqs. (7a)–(7c) - m penetration depth of substrate into the biofilm - max d–1 microbiological maximum growth rate - v o stoichiometric utilization coefficient for oxygen - v s stoichiometric utilization coefficient for substrate - dimensionless height in the filter bed - h H/u g superficial gas phase contact time - o (K 0 /DC ii )1/2 - o C o /C oi dimensionless oxygen concentration inside the biofilm - s C s /C si dimensionless substrate concentration inside the biofilm Experimental results, verifying the model presented will be discussed Part II (to be published in Vol. 6, No. 4)  相似文献   

5.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

6.
Summary Cell growth and phenol degradation kinetics were studied at 10°C for a psychrotrophic bacterium, Pseudomonas putida Q5. The batch studies were conducted for initial phenol concentrations, So, ranging from 14 to 1000 mg/1. The experimental data for 14<=So<=200 mg/1 were fitted by non-linear regression to the integrated Haldane substrate inhibition growth rate model. The values of the kinetic parameters were found to be: m=0.119 h–1, K S=5.27 mg/1 and K I=377 mg/1. The yield factor of dry biomass from substrate consumed was Y=0.55. Compared to mesophilic pseudomonads previously studied, the psychrotrophic strain grows on and degrades phenol at rates that are ca. 65–80% lower. However, use of the psychrotrophic microorganism may still be economically advantageous for waste-water treatment processes installed in cold climatic regions, and in cases where influent waste-water temperatures exhibit seasonal variation in the range 10–30°C.Nomenclature K S saturation constant (mg/l) - K I substrate inhibition constant (mg/l) - specific growth rate (h–1) - m maximum specific growth rate without substrate inhibition (h–1) - max maximum achievable specific growth rate with substrate inhibition (h–1) - S substrate (phenol) concentration (mg/l) - So initial substrate concentration (mg/l) - Smax substrate concentration corresponding to max (mg/l) - t time (h) - X cell concentration, dry basis (mg DW/l) - Xf final cell concentration, dry basis (mg DW/l) - Xo initial cell concentration, dry basis (mg DW/l) - Y yield factor (mg DW cell produced/mg substrate consumed)  相似文献   

7.
The thermal behavior of round and wagtail dancing honeybees (Apis mellifera carnica) gathering sucrose solutions of concentrations between 0.5 and 2 mol·l-1 was investigated under field conditions by infrared thermography (30–506 m flight distance). During the stay inside the hive thoracic surface temperature ranged from 31.4 to 43.9 °C. In both round and wagtail dancing honeybees the concentration of sucrose in the food influenced dancing temperature in a non-linear way. Average dancing temperature was 37.9 °C in foragers gathering a 0.5 mol·l-1 sucrose solution, 40.1°C with a 1 mol·l-1, 40.6°C with a 1.5 mol·l-1 and 40.7°C with a 2 mol·l-1 solution. The variability of thoracic temperature was highest with the 0.5 mol·l-1 and lowest with the 1.5 and 2 mol·l-1 concentrations. Thoracic temperatures during trophallactic contact with hive bees were similar to dancing temperature at 1.5 mol·l-1 but lower at the other concentrations. During periods of distribution of food to hive bees (trophallactic contact >2.5s) the dancers' thorax cooled down by more than 0.5°C considerably more frequently with the 0.5 mol·l-1 solution (65% of cases) than with the 1.5 mol·l-1 solution (26%). By contrast, heating the thorax up by more than 0.5°C was infrequent with the 0.5 mol·l-1 solution (2%) but occurred at a maximum rate of 26% with the 1.5 mol·l-1 solution. Bees gathering the 1 or 2 mol·l-1 solutions showed intermediate behavior. Linear model analysis showed that at higher concentrations the dancers compensated better for variations of hive air temperature: per 1 °C increase of hive temperature dancing temperature increased by 0.34, 0.22, 0.12, and 0.13 °C with 0.5, 1, 1.5, and 2 mol·l-1 sucrose solutions, respectively. The results furnish evidence that dancing honeybees follow a strategy of selective heterothermy by tuning their thermal behavior to the needs of the behavior performed at the moment. Thoracic temperature is regulated to a high level and more accurately when fast exploitation of profitable food sources is recommended. Thoracic temperature is lowered when the ratio of gain to costs of foraging becomes more unfavorable.Abbreviations SD standard deviation - SD reg SD around regression line - H rel relative humidity at feeding station - T a air temperature at feeding station - T i air temperature near the dancers - T d Thoracic surface temperatures - T d dancing - T tr trophallactic contact (distribution of food) - T w walking - T stay mean temperature of total stay in the hive  相似文献   

8.
Mathematical model parameters for the methanogenic degradation of propylene glycol were estimated in a sequential manner by means of an optimization technique. Model parameters determined from an initial experimental data set using one bioreactor were then verified with the results from a second bioreactor. The proposed methodology is a useful tool to obtain model parameters for continuous flow reactors with completely mixed regime. Abbrevations: S – substrate concentration (mg COD l–1); S in – influent substrate concentration (mg COD l–1); D L – dilution rate (day–1); – stoichiometric coefficients (ND); nx – number of microbial species (ND); X S – fixed biomass concentration (mg biomass l–1); X L – suspended biomass concentration of (mg biomass l–1); k d – decay rate of biomass (day–1); b S – specific detachment rate of biofilm (day–1); – specific growth rate of biomass (day–1); m – maximum specific growth rate of biomass (day–1); K S – half saturation constant (mg COD l–1); K I – inhibition constant (mg COD l–1).  相似文献   

9.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

10.
Summary Penicillin G recovery is investigated in a continuous flotation column in the presence of different collectors which form a complex with penicillin. The performance of the penicillin recovery was investigated as a function of the mole ratio () of collector-to-penicillin and the aliphatic chain length of the collector. At =1 and low penicillin concentrations (e.g., 20 mg·1-1), high foam liquid concentrations (680 mg·l-1), low residue concentrations (12 mg·l-1) and high penicillin separation (56) can be attained. At =4 the separation increases to 150, and 95% of the penicillin can be recovered.Symbols Cp penicillin concentration in feed (mg·l-1) - CR penicillin concentration in outlet liquid (mg·l-1) - CS penicillin concentration in foam liquid (mg·l-1) - CS/CP penicillin enrichment (-) - CS/CR penicillin separation (-) - % Pen in S penicillin yield in foam liquid (%) - VV}S foam liquid volume flow (ml·min-1) - VV}P feed (ml·min-1) - VVN 2 nitrogen flow rate (ml·s-1) - temperature  相似文献   

11.
Summary A constant temperature hot film anemometer has been used to evaluate mean liquid flow velocity, bubble frequency, turbulence scale and intensity, and the rate of energy dissipation by liquid phase bubble flow.Symbols M mass - L lenght - T time - a gas/liquid interfacial area L2 - a=a/VL specific gas/liquid interfacial area with regard to the volume of the liquid L–1 - d bubble diameter L - d mean bubble diameter L - de dynamic equilibrium (maximum stable) bubble size L - dp primary bubble diameter L - ds Sauter bubble diameter L - E specific energy dissipation rate with regard to the volume of the liquid ML–1T–3 - E VL energy dissipation rate ML2T–3 - E=E/ since =1 g cm–3, E has the same numerical value as E. Therefore, the symbol E is used everywhere in the present paper for E and called energy dissipation rate (S. s–2=Stokes. s–2) L2T–3 - EG or G local relative gas hold up L2T–3 - f() autocorrelation function [Eq. (10)] L2T–3 - f(r) cross correlation function [Eq. (11)] L2T–3 - g acceleration of gravity LT–2 - k constant LT–2 - kL mass transfer coefficient LT–1 - kLa volumetric mass transfer coefficient with regard to the volume of the liquid T–1 - N0 number of crossings of u and T–1 - nB bubble frequency T–1 - r distance between two points 1 and 2 of the cross correlation function L - t time T - u momentaneous liquid velocity LT–1 - mean liquid velocity LT–1 - mean square fluctuation velocity L2T–2 - intensity of turbulence LT–1 - x position coordinate L - V volume of the bubbling layer in the column L3 - VL volume of the bubble free layer in the column L3 - V electrical voltage (in Fig. 2) L3 - v velocity scale [Eq. (6)] LT–1 - Wecrit critical Weber number [Eq. (4)] LT–1 - wSG superficial gas velocity LT–1 - wSL superficial liquid velocity LT–1 - G or EG local relative gas hold up LT–1 - smallest scale [Eq. (6)] L - time delay in the autocorrelation function [Eq. (10)] T - energy dissipation scale [E. (15)] L - f: Taylor's vorticity scale [E. (14)] L - kinematic viscosity of the liquid L2T–1 - density of the liquid ML–3 - surface tension MT–2 - dynamic pressure of the turbulence [Eq. (8)] ML–1T–2 - p primary (at the aerator) - e equilibrium (far from the aerator)  相似文献   

12.
The performance of a tapered reactor for the continuous cultivation of bakers' yeast (SCP) from cane molasses has been compared with that of a conventional cylindrical reactor. It is found that the tapered reactor has less non-idealities (bypass and deadspace).Using the experimentally evaluated bypass and deadspace values, a model for predicting conversions of substrate (cane molasses), based on the RTD model proposed by Cholette and Cloutier has been developed. The experimental substrate conversions are found to match the model satisfactorily.List of Symbols D h–1 dilution rate - E() exit age distribution function - K s kg/m3 Monod's saturation constant - -r sa kg/(m3 · h) rate of substrate utilization - S kg/m3 substrate concentration expressed as dextrose equivalent (DE) - S a kg/m3 substrate concentration in active zone - S 0 kg/m3 initial substrate concentration - S/S 0 dimensionless substrate concentration - v a dm3/h volumetric flow through active zone - v b dm3/h volumetric flow through bypass stream - u l dm3/h substrate feed rate - v g dm3/min air-flow rate - V dm3 total working volume of the reactor - V a dm3 volume of active zone in reactor - V d dm3 volume of dead zone in reactor - X kg/m3 biomass concentration Greek Letters fraction of bypass of feed, v b /v l - fraction of deadspace, V d /V - dimensionless residence time - m h–1 maximum specific growth rate - h mean residence time, V/v l   相似文献   

13.
Summary The effect of various culture conditions on growth kinetics of an homofermentative strain of the lactic acid bacterium Streptococcus cremoris were investigated in batch cultures, in order to facilitate the production of this organism as a starter culture for the dairy industry. An optimal pH range of 6.3–6.9 was found and a lactose concentration of 37 g·l-1 was shown to be sufficient to cover the energetic demand for biomass formation, using the recommended medium. The study of the effect of lactic acid concentration on growth kinetics revealed that the end-product was not the sole factor affecting growth. The strain was characterized for its tolerance towards lactic acid and a critical concentration of 70 g·l-1 demonstrated. With the product yield of 0.9 g·g-1 at non-lactose limiting conditions the lactic acid concentration of 33 g·l-1 could not explain the low growth rates obtained, implicating a nutritional limitation.Symbols t f fermentation duration (h) - X Biomass concentration (g·l-1) - X m maximum biomass concentration (g·l-1) - S lactose concentration (g·l-1) - S r residual lactose concentration (g·l-1) - P produced lactic acid concentration (g·l-1) - P a added lactic acid concentration (g·l-1) - P c critical lactic acid concentration (g·l-1) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - R x/S biomass yield (g·g-1) calculated when =0 - R P/S product yield (g·g-1)  相似文献   

14.
Summary The solubility of oxygen in the liquid phase of a bioreactor was changed by a ramp change of temperature, and kLa was determined from the resulting return to equilibrium of dissolved oxygen activity. The maximum kLa that can be measured by this method in a standard laboratory scale bioreactor is 145 h–1 corresponding to a temperature change rate of 320°C h–1.Nomenclature p Difference between pG and pL (% saturation) - T Ramp change of temperature (°C) - E Temperature-compensated output from the oxygen electrode (A) - Eu Uncompensated output from the oxygen electrode (A) - kLa Overall volumetric mass transfer coefficient (h–1) - kLaTm Overall volumetric mass transfer coefficient at temperature Tm (h–1) - PG Dissolved oxygen activity in equilibrium with the gas phase (% saturation) - pL Dissolved oxygen activity (% saturation) - pLm Dissolved oxygen activity at time tm (% saturation) - t Time (h) - tm Time of maximum p (h) - T Temperature (°C) - Tcal Calibration temperature of the oxygen electrode (°C) - Tm Final temperature after a temperature shift (°C) - Tn Temperature at time tn  相似文献   

15.
Summary Chaetomium cellulolyticum (ATCC 32319) was cultivated on glucose, Avicel and/or Sigmacell in a 20-1 stirred tank batch reactor. The substrate (cellulose) concentration, the cell mass concentration (through protein and/or nitrogen content), reducing sugar concentration, the enzyme activity, the alkali consumption rate, the dissolved O2 and CO2 concentrations in the outlet gas were measured. The specific growth rate, the substrate yield coefficient, cell productivity, the oxygen consumption rate, the CO2 production rate and the volumetric mass transfer coefficient were determined. At the beginning of the growth phase the oxygen utilization rate exhibits a sharp maximum. This maximum could be used to start process control. Because of the long lag phase periodic batch operation is recommended.Symbols CP cell protein concentration (g l–1) - FPA FP enzyme activity (IU l–1) - GP dissolved protein concentration (g l–1) - IU international unit of enzyme activity - kLa volumetric mass tranfer coefficient (h–1) - LG alkali (1 n NaOH) consumption (ml) - LGX specific alkali consumption rate per cell mass (ml g–1 h–1) - P cell mass productivity (g l–1 h–1) - specific oxygen consumption rate per cell mass (g g–1 h–1) - Q aeration rate (volumetric gas flow rate per volume of medium, vvm) (min–1) - N impeller speed (revolution per minute, rpm) (min–1) - S substrate concentration (g l–1) - S0 S at tF=0 (g l–1) - S0 S in feed (g l–1) - SR acid consumption (ml) - TDW total dry weight (g l–1) - T temperature (° C) - tF cultivation time (h) - U substrate conversion - X cell mass concentration (g l–1) - YX/S vield coefficient - specific growth rate (h–1) - m maximum specific growth rate (h–1)  相似文献   

16.
Summary The short-circuit current (SCC) across isolated skin from bullfrog larvae in developmental stage XXI was small and insensitive to amiloride. Overnight incubation of this tissue with 10-6 M aldosterone stimulated the SCC from 1.35±0.55 to 14.55±4.12 A·cm-2 with 11.18±4.46 A·cm-2 being blocked by 100 M amiloride. Histologic examination of aldosterone-treated skins revealed a separation of the apical cell layer from the underlying epidermis that was not seen in untreated preparations. The onset of amiloride-sensitive Na+ transport thus coincided with the exposure of the apical surface of newly differentiated epithelial cells. Similar results were obtained with skin from stage XXI larvae whose rate of metamorphosis had been stimulated by 10 g·l-1 thyroxine (T4) but not with skin from T4-treated larvae in stages XIX and XX. Fluctuation analysis of the amiloride-sensitive SCC of the above preparations failed to show a consistent Lorentzian component in the power-density spectrum. Fluctuation analysis was possible on skins from larvae whose development had been accelerated by 7–9 days treatment with 10 g·l-1 triiodothyronine (T3). Aldosterone treatment of these tissues resulted in a significant increase in Na+ channel density.Abbreviations ASCC component of the short-circuit current (A·cm-2) that is blocked by amiloride - fc frequency (Hz) at which the magnitude of the Lorenzian component of the power spectra is reduced by half - i current (pA) through individual amiloride-sensitive Na+ channels - I Na+ amiloride-sensitive short-circuit current (A·cm-2) that remains after treatment with a given amiloride concentration - k 01 the rate constant (s-1·M-1) for the association of amiloride with Na+ channels - k 10 rate constant (s-1) for the dissociation of amiloride from Na+ channels - K b magnitude of the power spectrum (A2·s·cm-2) at a frequency of 1 Hz - KSCC short-circuit (A·cm-2) current with K+ as the primary mucosal cation - M density of amiloride-sensitive Na+ channels in the apical cell membrane - SCC short-circuit current (A·cm-2) - S (f) magnitude of the power spectra (A2·s·cm-2) at a given frequency - S 0 the magnitude of the plateau region of the Lorentzian component of the power spectra (A2·s·cm-2) - T 3 Triiodothyronine - T 4 Thyroxine  相似文献   

17.
Summary Particle supported biofilms of uniform thickness were generated in an aerobic fluidized-bed reactor with phenol as the carbon source. A method was developed for determining the effective diffusivities of oxygen and phenol using trypan blue, a vital stain as the tracer. The effective diffusivities of oxygen and phenol were found to be 2.72×10–6 cm2/s and 1.12×10–6 cm2/s respectively.Nomenclature Ci initial solute concentration in bulk, g/cm3 - Ct solute concentration in bulk at time t, g/cm3 - C bulk solute concentration at equilibrium, g/cm3 - D molecular diffusivity, cm2/s - D effective diffusivity, cm2/s - Do Dp Dtb molecular diffusivity of oxygen, phenol and trypan blue, cm2/s - Do, Dp, Dtb effective diffusivity of oxygen, phenol and trypan blue, cm2/s - Ds molecular diffusivity of substrate, cm2/s - Ds effective diffusivity of substrate, cm2/s - K partition coefficient - Mt amount of solute in the particle at time t, g - M amount of solute in the particle at equilibrium, g - r particle radius, cm - r bp radius of the particle with biofilm, cm - S substrate concentration, g/cm3 - Sb substrate concentration in bulk, g/cm3 - Si initial substrate concentration, g/cm3 - V1 solute molar volume, cm3/g mol Greek Symbols bf porosity of the biofilm - tortuosity factor  相似文献   

18.
Summary The influence of the concentration of oxygen on lipase production by the fungus Rhizopus delemar was studied in different fermenters. The effect of oxygen limitation ( 47 mol/l) on lipase production by R. delemar is large as could be demonstrated in pellet and filamentous cultures. A model is proposed to describe the extent of oxygen limitation in pellet cultures. Model estimates indicate that oxygen is the limiting substrate in shake flask cultures and that an optimal inoculum size for oxygen-dependent processes can occur.Low oxygen concentrations greatly negatively affect the metabolism of R. delemar, which could be shown by cultivation in continuous cultures in filamentous growth form (Doptimal=0.086 h-1). Continuous cultivations of R. delemar at constant, low-oxygen concentrations are a useful tool to scale down fermentation processes in cases where a transient or local oxygen limitation occurs.Symbols and Abbreviations CO Oxygen concentration in the gas phase at time = 0 (kg·m-3) - CO 2i Oxygen concentration at the pellet liquid interface (kg·m-3) - CO 2i Oxygen concentration in the bulk (kg·m-3) - D Dilution rate (h-1) - IDO 2 Diffusion coefficient for oxygen (m2·s-1) - dw Dry weight of biomass (kg) - f Conversion factor (rs O 2 to oxygen consumption rate per m3) (-) - k Radial growth rate (m·s-1) - K Constant - kla Volumetric mass transfer coefficient (s-1) - klA Oxygen transfer rate (m-3·s-1) - kl Mass transfer coefficient (m·s-1) - K O 2 Affinity constant for oxygen (mol·m-3) - K w Cotton plug resistance (m-3·s-1) - M Henry coefficient (-) - NV Number of pellets per volume (m-3) - R Radius (m) - RO Radius of oxygen-deficient core (m) - RQ Respiration quotient (mol CO2/mol O2) - rs O 2 Specific oxygen consumption rate per dry weight biomass (kg O2·s-1[kg dw]-1) - rX Biomass production rate (kg·m-3·s-1) - SG Soytone glucose medium (for shake flask experiments) - SG 4 Soytone glucose medium (for tower fermenter and continuous culture experiments) - V Volume of medium (m-3) - X Biomass (dry weight) concentration (kg·m-3) - XR o Biomass concentration within RO for a given X (kg·m-3) - Y O 2 Biomass yield calculated on oxygen (kg dw/kg O2) - Thiele modulus - Efficiency factor =1-(RO/R)3 (-) - Growth rate (m-1·s-1·kg1/3) - Dry weight per volume of pellet (kg·m-3)  相似文献   

19.
Summary Previous experiments have shown that during prey-catching behavior (orienting, snapping) in response to a worm-like moving stripe common toads.Bufo bufo (L.) exhibit a contrast-and direction-dependent edge preference. To a black (b) stripe moving against a white (w) background (b/w), they respond (R*) preferably toward the leading (l) rather the trailing (t) edge (R l * > R t * ), thus displaying head preference. If the contrastdirection is reversed (w/b), the stripe's trailing edge is preferred (R l * < R t * ), hence showing tail preference. In the present study, neuronal activities of retinal classes R2 and R3 and tectal classes T5(2) and T7 have been extracellularly recorded in response to leading and trailing edges of a 3 ° × 30 ° stripe simulating a worm and traversing the centers of their excitatory receptive fields (ERF) horizontally at a constant angular velocity in variable movement direction (temporo-nasal or naso-temporal).The behavioral contrast-direction dependent edge preferences are best resembled by the responses (R) of prey-selective class T5(2) neurons (Rl Rt=101 for b/w, 0.31 for w/b) and T7 neurons (RlRt=61 for b/w, 0.41 for w/b); the T7 responses may be dendritic spikes. This property can be traced back to off-responses dominated retinal class R3 neurons (RlRt=61 for b/w, 0.51 for w/b), but not to class R2 (RlRt =1.21 for b/w and 0.91 for w/b). The respective edge preference phenomena are independent of the direction of movement.When stimuli were moved against a stationary black-white structured background, the head preference to the black stripe and the tail preference to the white stripe were maintained in class R3, T5(2), and T7 neurons. If the stripe traversed the ERF together with the structured background in the same direction at the same velocity, the responses of tectal class T5(2) and T7 neurons were strongly inhibited, particularly in the former. Responses of retinal R2 neurons in comparable situations could be reduced by about 50%, while class R3 neurons responded to both the stimulus and the moving background structure.The results support the concept that the prey feature analyzing system in toads applies principles of (i) parallel and (ii) hierarchial information processing. These are (i) divergence of retinal R3 neuronal output contributes to stimulus edge positioning and (in combination with R2 output) area evaluation intectal neurons and to stimulus area evaluation and (in combination with R4 output) sensitivity for moving background structures inpre tectal neurons; (ii) convergence of tectal excitatory and pretectal inhibitory inputs specify the property of prey-selective tectal T5(2) neurons which are known to project to bulbar/spinal motor systems.Abbreviations ERF excitatory receptive field - IRF inhibitory receptive field - N nasal - T temporal - R w response to a worm-like stripe moving in the direction of its longer axis - R A response to an antiworm-like stripe whose longer axis is oriented perpendicular to the direction of movement - R l response to the leading edge of a worm-like moving stripe - R t response to the trailing edge of a worm-like moving stripe - b/w black stimulus against a white background - w/b white stimulus against a black background - sm structured moving background - ss structured stationary background - u minimal structure width of a structured background consisting of rectangular black and white patches in random distribution - HRP horseradish peroxidase  相似文献   

20.
To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 l of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 l in steps of 5 l) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to empty, full and mean (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm f 1.424 ; P mrel e=6.471·bm f 1.040 ; =83.248+0.385. The following negative correlations were found: V=3.939–0.032; T=1.324·10-4–0.038·10-4. Statistically significant correlations were not found in T(f), L(), R(), f(), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).Abbreviations A(m2) frontal area - bl(m) body length - bm(mg) body mass - c(mol·1-1) glucose concentration of feeding solution - c D (dimensionless) drag coefficient, related to A - D(N) drag - F w(N) body weight - F wp weight of paper fragment lost at flight start - f wingbeat frequency (s-1) - g(=9.81 m·s-2) gravitational acceleration - I(Ns)=R(t) dt total impulse of a flight - L(N) lift vertical sustaining force component - P m(J·s-1=W) metabolic power - Pm ret (W·g-1) metabolic power, related to body mass - R(N) resultant aerodynamic force - Re v·bl·v -1 (dimensionless) Reynolds number, related to body length - s(m) v(t) dt virtual flight distance of a flight - s(km) total virtual flight distance - T (N) thrust horizontal force component of horizontal flight - T a (°C) ambient temperature - t(s) time - t tot (s or min) total flight time - v(m·s-1) flight velocity - v(l) volume of feeding solution - W (J) energy and energy content of V - ( °) body angle of attack between body longitudinal axis and flow direction - ( °) tilting angle ( 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity - (=1.2 kg·m-3 at 25°C) air density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号