首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphoid tumors display a wide variety of growth patterns in vivo, from that of a solitary extralymphoid tumor, to a general involvement of all lymphoid organs. Normal lymphocytes are uniquely mobile cells continuously recirculating between blood and lymph throughout much of their life cycle. Therefore, it is reasonable to propose that disseminating malignant lymphocytes may express recirculation characteristics or homing properties consistent with that of their normal lymphoid counterparts. Trafficking of lymphocytes involves the expression and recognition of both lymphocyte homing receptors and their opposing receptors on endothelium, the vascular addressins. These cell surface elements direct the tissue-selective localization of lymphocyte subsets in vivo into organized lymphoid organs and sites of chronic inflammation where specific binding events occur between lymphocytes and the endothelium of specialized high endothelial venules (HEV). In a recent murine study of 13 lymphoma lines, we found that lymphomas that bind well to high endothelial venules, in the Stamper-Woodruff in vitro assay (an assay of lymphocyte binding to venules in frozen sections of peripheral lymph nodes or Peyer's patches), spread hematogenously to all high endothelial venule bearing lymphoid organs, whereas non-binding lymphomas did not. In some cases lymphomas that bound with a high degree of selectivity to peripheral lymph node (PLN) high endothelial venules exhibited only limited organ preference of metastasis, involving the mucosal lymphoid organs Peyer's patches (PP) in addition to the peripheral lymph nodes of adoptive recipients. Here we demonstrate that Peyer's patch high endothelial venules express a low but functional level of peripheral lymph node addressin (MECA-79) that can be recognized by lymphomas expressing the peripheral lymph node homing receptor (MEL-14 antigen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
《The Journal of cell biology》1990,111(6):2765-2774
The present study was undertaken to determine the relationship between the hyaluronate receptor and CD44 (H-CAM), cell-surface glycoproteins of similar molecular weights that have been implicated in cell adhesion. In initial experiments, a panel of monoclonal antibodies directed against CD44 were tested for their ability to cross react with the hyaluronate receptor. These antibodies immunoprecipitated [3H]hyaluronate binding activity from detergent extracts of both mouse and human cells, indicating that the hyaluronate receptor is identical to CD44. In addition, one of these antibodies (KM-201 to mouse CD44) directly blocked the binding of labeled hyaluronate to the receptor and inhibited hyaluronate dependent aggregation of SV-3T3 cells. CD44 has also been implicated in lymphocyte binding to high endothelial venules during lymphocyte homing. Interestingly, the monoclonal antibody Hermes- 3, which blocks lymphocyte binding to the high endothelial venules of mucosal lymphoid tissue, had no effect on the binding of labeled hyaluronate. Furthermore, the binding of lymphocytes to high endothelial cells of lymph nodes and mucosal lymphoid tissue was not significantly affected by treatment with agents that block the binding of hyaluronate (hyaluronidase, excess hyaluronate and specific antibodies). Thus, CD44 appears to have at least two distinct functional domains, one for binding hyaluronate and another involved in interactions with mucosal high endothelial venules.  相似文献   

3.
Lymphocyte attachment to high endothelial venules within lymph nodes is mediated by the peripheral lymph node homing receptor (pnHR), originally defined on mouse lymphocytes by the MEL-14 mAb. The pnHR is a calcium-dependent lectin-like receptor, a member of the LEC-CAM family of adhesion proteins. Here, using a soluble recombinant form of the homing receptor, we have identified an endothelial ligand for the pnHR as an approximately 50-kD sulfated, fucosylated, and sialylated glycoprotein, which we designate Sgp50 (sulfated glycoprotein of 50 kD). Recombinant receptor binding to this lymph node-specific glycoprotein requires calcium and is inhibitable by specific carbohydrates and by MEL-14 mAb. Sialylation of the component is required for binding. Additionally, the glycoprotein is precipitated by MECA-79, an adhesion-blocking mAb reactive with lymph node HEV. A related glycoprotein of approximately 90 kD (designated as Sgp90) is also identified.  相似文献   

4.
Vinnikov V  Lloyd D  Finnon P 《Mutation research》2012,731(1-2):107-116
Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24h at 37°C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2±1.8% in plasma-free cultures, 21.6±1.1% in cultures treated with plasma from unirradiated blood, 20.2±1.4% in cultures with plasma from blood given 2-4Gy and 16.7±3.2% in cultures with plasma from blood given 6-10Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.  相似文献   

5.
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing.  相似文献   

6.
We wished to determine whether human lymphocytes, like their murine counterparts, show organ-specific interactions with high endothelial venules (HEV). Functional HEV-binding ability was measured by an in vitro assay of lymphocyte adherence to HEV in frozen sections of human lymphoid tissues which was adapted from rodent systems. It was found that human lymphocytes bind selectively to HEV and that, whereas mature T lymphocytes bind preferentially to HEV in peripheral lymph nodes and tonsils, B lymphocytes show preferential binding to HEV in GALT. Moreover, by analyzing the binding characteristics of T4+ and T8+ T cell populations, it was found that T8+ cells adhere preferentially to HEV in GALT and mesenteric lymph nodes and tonsil, and that T4+ cells bind slightly better to HEV in peripheral lymph nodes. The above findings indicate that organ--specific lymphocyte-endothelial cell recognition mechanisms exist also in humans, and suggest that these mechanisms play an important role in normal and pathologic lymphocyte traffic.  相似文献   

7.
The interaction of leukocytes with endothelial cells is intrinsic to the process of leukocyte extravasation, whether during the entry of blood polymorphonuclear leukocytes and monocytes into sites of acute and chronic inflammation, or during the homing of lymphocytes to lymphoid organs. A lymphocyte surface glycoprotein, defined by monoclonal antibody MEL-14, has been described that appears to mediate lymphocyte recognition of postcapillary venules in peripheral lymph nodes, and to control the migration of lymphocytes from the blood into these lymphoid organs. We now report that the antigenic determinant recognized by MEL-14 is present at high levels on other leukocytes as well, including neutrophils, monocytes, and eosinophils; and we demonstrate involvement of the MEL-14 antigen in neutrophil-endothelial cell interactions. MEL-14 immunoprecipitates a neutrophil surface protein of Mr approximately 100,000, similar in m.w. to the 80,000 to 90,000 dalton lymphocyte surface MEL-14 antigen, and it blocks the interaction of neutrophils with endothelial cells in an in vitro model of adhesion to postcapillary venules in lymph node frozen sections. Neutrophil binding to lymph node venules is also inhibited by PPME, a mannose-6-phosphate-rich yeast polysaccharide that is thought to mimic the endothelial cell ligand for the MEL-14-defined lymphocyte receptor. Interestingly, neither MEL-14 nor PPME exhibit a major effect on neutrophil binding to postcapillary venules in Peyer's patches, suggesting that as for lymphocytes, the neutrophil MEL-14 antigen is involved in recognition of tissue-specific endothelial determinants. Finally, we show that MEL-14 inhibits the capacity of neutrophils to migrate from the blood into sites of acute inflammation in the skin. These observations lead us to propose that receptors for tissue-specific endothelial determinants are utilized by neutrophils and lymphocytes and probably other leukocytes during the physiologic process of leukocyte extravasation in vivo.  相似文献   

8.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

9.
The response of endothelial cells (EC) to high radiation doses leads to damage of normal tissue or tumor. The precise mechanisms of the endothelial-tissue linkage are still largely unknown. We investigated the possible involvement of a bystander effect, secondary to endothelial damage, in tissue response to radiation. Proliferating human intestinal epithelial T84 cells were grown in a non-contact co-culture with confluent primary human microvascular EC (HMVEC-L). The bystander response in unirradiated T84 cells co-cultured with irradiated EC was studied by evaluating cell growth, cell death and epithelial morphology. Twenty-four hours after exposure of EC to 15 Gy, unirradiated T84 cells showed a decreased cell number (29%) and percentage in mitosis (66%) as well as increased apoptosis (1.5-fold) and cell surface area (1.5-fold), highlighting the involvement of bystander effects on T84 cells after irradiation of EC. Furthermore, the responses of T84 cells were amplified when EC and T84 cells were irradiated together, indicating that the bystander response in T84 cells adds further to direct radiation damage. As opposed to direct irradiation, the T84 cell bystander response did not involve the cell cycle-related protein p21(Waf1) (CDKN1A) and pro-apoptosis protein BAX. The bystander effect was specific to EC since the irradiation of human colon fibroblasts did not induce bystander responses in unirradiated T84 cells. These results strengthen previous in vivo evidence of the role of EC in tissue damage by radiation. In addition, this study provides a suitable and useful model to identify soluble factors involved in bystander effects secondary to endothelial damage. Modulating such factors may have important clinical implications.  相似文献   

10.
In experiments designed to measure radiation-induced DNA damage using the DNA unwinding-hydroxyapatite chromatography technique, we observed that under some experimental conditions a significant proportion of the test DNA became tightly bound to the hydroxyapatite (HA) and could not be released even with a high concentration of phosphate buffer. Approximately 5-10% of DNA from unirradiated cells binds to the HA. With increasing radiation doses in air, the fraction of bound DNA increases, reaching about 30% at about 35 Gy. The binding exhibits many of the characteristics of a radiation-induced cell lesion: the proportion of DNA retained by the HA is less when cells are irradiated under hypoxic conditions or in the presence of the thiol radioprotector dithiothreitol; and the binding decreases when an incubation period is allowed between irradiation and harvest of the cells for assay. Studies to determine the nature of the lesion responsible for the binding demonstrated that lesion production requires a component found in cells since no binding was observed with irradiated isolated DNA or nuclear matrix; the binding is not a result of the production of DNA-protein crosslinks; and the bound DNA is single-stranded, based on its sensitivity to nuclease S1. Because of the dose dependence of the binding of DNA to HA, the slopes of the dose-response curves for DNA damage determined with this assay depend on the method used to calculate the fraction of double-stranded DNA. Our demonstration that the bound DNA is single-stranded guides the choice of the method for data analysis.  相似文献   

11.
This report presents the results of an investigation designed to establish whether exposure of mice to ultraviolet radiation (UVR) is capable of influencing the factors that control the distribution of lymphoid cells in vivo. We found that such exposure resulted in a dramatic and long-lasting increase in the tropism of peripheral lymph nodes for circulating lymphoid cells. Termination of UVR exposure did not result in a reversal of this phenomenon. Since an increase in lymphocyte migration into the lymph nodes of UVR-exposed mice was apparent within 2 hr of infusion of the radiolabeled cells, we conclude that the homing assay data reflect a relatively increased binding of circulating lymphocytes to high endothelial venules (HEV) within the lymph nodes of irradiated animals. A histologic analysis of skin from UVR-exposed mice established that the dermal microvasculature had expanded in terms of size and number of vessels, a condition that also does not completely reverse after the termination of treatments. In spite of the increase in dermal microvasculature, very few inflammatory cells were detected in the irradiated skin site. These observations support our conclusion that the enhanced traffic of lymphocytes into peripheral lymph nodes of UVR-exposed mice occurs primarily via lymphocyte-HEV interactions rather than afferent drainage of the irradiated skin.  相似文献   

12.
The mechanical properties of living cells are known to be promising biomarkers when investigating the health and functions of the human body. Ionizing irradiation results in vascular injury due to endothelial damage. Thus, the current study objective was to evaluate the influence of continuous radiation doses on the mechanical properties of human umbilical vein endothelial cells (HUVECs), and to identify Young’s modulus (E) and viscoelastic behavior. Single-dose (0, 2, 4, 6, and 8 Gy) radiation was applied to HUVECs using a Cobalt-60 treatment machine in the current vitro irradiation study. Thereafter, a micropipette-aspiration technique was used to measure the elastic modulus of the HUVECs in control and radiation-induced samples. Confocal imaging was then performed for following of the cytoskeletal reorganization of the HUVECs in response to the different radiation doses. Significant enhanced adhesion of the elastic modulus of the HUVECs was observed. The dose value was seen to increase from 0 Gy to 8 Gy. A linear relationship was observed between the 0 Gy and 8 Gy doses following an examination of the dose-response curve for elastic modulus after irradiation. The correlation coefficient was found to be 0.955 and the sensitivity of the dose-elastic modulus to be 7.69 Pa..Gy-1 following analysis of the linear portion of the response curve. Also, a significant increment in stiffness accompanied with the considerable drop in creep compliance curve was detected in radiation-induced groups. Biomechanics-based analysis can provide a platform from which to assess the response of the endothelium to radiation when studying vascular system behavior during the cancer therapy process.  相似文献   

13.
Summary The afferent lymphatic vessels of rat popliteal lymph nodes were interrupted, and the histological alterations in the lymph nodes occurring 1 to 14 weeks after operation were studied. One week after operation the number of macrophages was considerably reduced and continued to decrease during the subsequent time periods studied. A 6 weeks most macrophages had disappeared. Simultaneously the immunological activity diminished and had completely disappeared 8 weeks after operation. Three weeks after operation the endothelial cells of the postcapillary high endothelial venules had flattened, and the number of immigrating lymphocytes was greatly reduced. Subsequently the lymph nodes became depleted of both macrophages and lymphocytes, leaving only the reticuloendothelial framework.  相似文献   

14.
Lymphocyte entry into lymph nodes (LN) and Peyer's patches (PP) occurs specifically at high endothelial cell venules (HEV). We previously isolated a high endothelial binding factor (HEBFLN) from rat lymph that blocked the lymphocyte binding sites of HEVLN but not HEVPP. In this study, mouse monoclonal anti-HEBFLN antibody (A.11) was used to investigate rat lymphocyte surface structures mediating adhesion to high endothelium. The A.11 antigen was expressed on the majority of thoracic duct lymphocytes (TDL), spleen, LN, PP cells, but was only detected on few (1 to 10%) thymus and bone marrow cells (indirect immunofluorescence). The treatment of TDL with the A.11 IgG blocked their ability to bind to HEVLN. This effect was specific, inasmuch as A.11 antibody did not block lymphocyte binding to HEVPP, and an anti-leukocyte-common antigen monoclonal antibody, OX1, did not block lymphocyte binding to HEVLN. In addition, the A.11 antigen isolated from the lymph and detergent lysates of TDL by antibody affinity chromatography had the capacity to block the lymphocyte binding sites of HEVLN but not HEVPP. Immunoprecipitation studies revealed that the A.11 antibody recognized the radioiodinated surface membrane proteins of TDL and TDL-derived T cells and B cells, which resolved with SDS-PAGE autoradiography into three polypeptides with relative m.w. of approximately 135,000, 63,000, and 40,000. We conclude that the A.11 antigen is a component of the lymphocyte surface recognition structure that mediates adhesion to high endothelial cells of rat peripheral lymph nodes.  相似文献   

15.
S A Weston  C R Parish 《Cytometry》1992,13(7):739-749
Previous studies have identified unique cell surface antigens which are associated with the specific binding of lymphocytes to high endothelial venules (HEV). Evidence is presented in this paper which demonstrates that uptake of the fluorescent dye calcein by lymphocytes represents an additional marker for the lymph node homing subpopulation of lymphocytes. Calcein exhibits a characteristic ability to label lymphocytes differentially into two distinct populations, based on fluorescence intensity, that does not occur with three other structurally related, fluorescein-based dyes. In vivo lymphocyte migration studies revealed that cells displaying the "dull" fluorescence phenotype, although entering all lymphoid organs examined, preferentially homed to the lymph nodes, particularly the popliteal lymph node (PLN). By contrast, lymphocytes displaying the "bright" phenotype were essentially excluded from entering lymphoid organs, where entry is HEV dependent, but were observed entering spleen, where entry is HEV independent. Furthermore, a high proportion (76.5%) of lymphocytes displaying the dull fluorescence phenotype expressed the PLN homing receptor MEL-14. Based on these observations it is suggested that calcein uptake may be a marker for general membrane properties, such as fluidity and plasticity, essential for the passage of lymphocytes through HEV.  相似文献   

16.
Previous work has established that the central nervous system can modulate the immune response. Direct routes through which this regulation may occur are the sympathetic and sensory innervation of lymphoid organs. We investigated the innervation of canine mesenteric lymph nodes using immunohistochemistry and the expression of binding sites for sensory neuropeptides using quantitative receptor autoradiography. The sympathetic innervation of lymph nodes was examined by immunohistochemical methods using an antiserum directed against tyrosine hydroxylase (TOH), the rate limiting enzyme in catecholamine synthesis. TOH-containing fibers were associated with 90% of the blood vessels (arteries, veins, arterioles and venules) in the hilus, medullary and internodular regions of lymph nodes and in trabeculae with no obvious relationship to blood vessels. The sensory innervation of lymph nodes was investigated using antisera directed against the putative sensory neurotransmitters calcitonin gene-related peptide (CGRP) and substance P (SP). CGRP- and SP-containing fibers were detected in the hilus, the medullary region, and the internodular region of lymph nodes usually in association with arterioles and venules. About 50% of the arterioles and venules exhibited a CGRP innervation and a smaller fraction (5-10%) were innervated by SP-containing fibers. Few if any TOH, CGRP, and SP nerve fibers were detected in the germinal centers of lymph nodes. Using quantitative receptor autoradiography we studied the distribution of receptor binding sites for the sensory neuropeptides CGRP, SP, substance K (SK), vasoactive intestinal peptide (VIP), somatostatin (SOM), and bombesin. Specific CGRP binding sites were expressed throughout lymph nodes by trabeculae, arterioles, venules and 25% of the germinal centers. SP receptor binding sites were localized to arterioles and venules in the T cell regions and 25-30% of the germinal centers. VIP binding sites were localized to the internodular and T cell regions, to medullary cords, and to 10-20% of germinal centers. SK, SOM, and bombesin binding sites were not detected in the lymph nodes, although receptor binding sites for these peptides were detected with high specific/nonspecific binding ratios in other canine peripheral tissues. Taken together with previous results these findings suggest that the sympathetic and sensory innervation of mesenteric lymph nodes appears to be involved with the regulation of their blood and lymph flow. The neuropeptide receptor binding sites in lymph node germinal centers may be expressed by lymphocytes upon activation by antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The trafficking of lymphocytes from the blood and into lymphoid organs is controlled by tissue-selective lymphocyte interactions with specialized endothelial cells lining post capillary venules, in particular the high endothelial venules (HEV) found in lymphoid tissues and sites of chronic inflammation. Lymphocyte interactions with HEV are mediated in part by lymphocyte homing receptors and tissue-specific HEV determinants, the vascular addressins. A peripheral lymph node addressin (PNAd) has been detected immunohistologically in mouse and man by monoclonal antibody MECA-79, which inhibits lymphocyte homing to lymph nodes and lymphocyte binding to lymph node and tonsillar HEV. The human MECA-79 antigen, PNAd, is molecularly distinct from the 65-kD mucosal vascular addressin. The most abundant iodinated species by SDS-PAGE is 105 kD. When affinity isolated and immobilized on glass slides, MECA-79 immunoisolated material binds human and mouse lymphocytes avidly in a calcium dependent manner. Binding is blocked by mAb MECA-79, by antibodies against mouse or human LECAM-1 (the peripheral lymph node homing receptor, the MEL-14 antigen, LAM-1), and by treatment of PNAd with neuraminidase. Expression of LECAM-1 cDNA confers PNAd binding ability on a transfected B cell line. We conclude that LECAM-1 mediates lymphocyte binding to PNAd, an interaction that involves the lectin activity of LECAM-1 and carbohydrate determinants on the addressin.  相似文献   

18.
Radioactively labelled thoracic duct lymphocytes from syngeneic rat donors were injected iv into recipients which had been given a continuous iv infusion of prednisolone at 1 mg/hr for 15–18 hr previously. The tissue distribution and recirculation into lymph of the labelled lymphocytes were compared quantitatively in the prednisolone-treated and control recipients by scintillation counting and autoradiography. The most prominent effect of prednisolone was to retard recirculating lymphocytes within the tissues to which they are normally distributed by the blood, namely the bone marrow, the spleen, and the lymph nodes. Although lymphocyte traffic was almost completely frozen by prednisolone, recirculating lymphocytes were not killed. A second effect of prednisolone was to impair the influx of lymphocytes from the blood into lymph nodes. Different groups of lymph nodes varied in the extent to which prednisolone inhibited the entry of lymphocytes, and previous antigenic stimulation completely exempted lymph nodes from this inhibition. Lymphocytes took a longer time to cross the walls of high endothelial venules in the lymph nodes of prednisolone-treated rats. A third effect of prednisolone was to increase the rate at which lymphocytes entered the bone marrow from the blood by crossing sinusoidal endothelium.  相似文献   

19.
In a variety of lymphocyte interactions, lymphocyte function-associated antigen-1 (LFA-1) plays an important role as an accessory mechanism mediating cell adhesion. We tested the possibility that LFA-1 could also be involved in the specific binding of lymphocytes to high endothelial venules (HEV) during homing. Antibodies against LFA-1 but not against various other cell surface molecules (except the putative gp90 homing receptor defined by the MEL-14 antibody) were found to inhibit in vitro adherence of lymphocytes to HEV in frozen sections of lymph nodes. Binding of T cell lines to HEV was also inhibited by anti-LFA-1 antibody. Using sublines selected for differential expression of the MEL-14 antigen, MEL-14 high cells (which bind well to HEV) were less susceptible to inhibition by anti-LFA-1 than poor binders with low levels of the homing receptor, supporting the model of LFA-1 being an accessory mechanism strengthening weak interactions between cells. Parallel results were found in vivo where anti-LFA-1 antibodies reduced the migration of normal lymphocytes into lymph nodes and Peyer's patches by 40 to 60%. Localization in the lung, especially of activated lymphocytes, was also impaired, although to a lesser extent. These findings suggest that LFA-1 plays an accessory role in cellular interactions relevant for lymphocyte migration.  相似文献   

20.
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号