首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential and isopycnic centrifugation of rat liver homogenates showed that, besides its established localization in peroxisomes and endoplasmic reticulum, dihydroxyacetone-phosphate acyltransferase is also present in mitochondria. The three activities differed in a number of properties (pH optimum, palmitoyl-CoA and dihydroxyacetone-phosphate dependence, and sensitivity toward N-ethylmaleimide) and are therefore likely associated with three distinct proteins. Glycerol 3-phosphate (5 mM) did not inhibit peroxisomal dihydroxyacetone-phosphate acyltransferase but inhibited the extraperoxisomal activities virtually completely. Peroxisomal dihydroxyacetone-phosphate acyltransferase was located at the inner aspect of the peroxisomal membrane, but the enzyme was not latent. Purified microsomes, from which intact peroxisomes had been removed, were still contaminated with peroxisomal membranes as deduced from the presence of two dihydroxyacetone-phosphate acyltransferase activities: a glycerol 3-phosphate-resistant activity with properties similar to those of peroxisomal dihydroxyacetone-phosphate acyltransferase and a glycerol 3-phosphate-sensitive "true" microsomal dihydroxyacetone-phosphate acyltransferase. We propose that, assayed in the presence of 5mM glycerol 3-phosphate, dihydroxyacetone-phosphate acyltransferase can be used as a marker enzyme for peroxisomal membranes. Such a marker enzyme has not hitherto been available. The differential effect of 5 mM glycerol 3-phosphate on peroxisomal and extraperoxisomal dihydroxyacetone-phosphate acyltransferases enabled us to determine the relative contribution of these activities to overall dihydroxyacetone-phosphate acylation in whole liver homogenates. At near-physiological pH and at near-physiological concentrations of unbound palmitoyl-CoA and of dihydroxyacetone-phosphate plus glycerol 3-phosphate, peroxisomes contributed 50-75%. The remaining percentage was mostly accounted for by the microsomal enzyme. At near-physiological concentrations of glycerol 3-phosphate plus dihydroxyacetone-phosphate, glycerolphosphate acyltransferase contributed 93% and dihydroxyacetone-phosphate acyltransferase 7% to overall glycerolipid synthesis in homogenates. This suggests that the dihydroxyacetone-phosphate pathway is of minor quantitative importance in overall hepatic glycerolipid synthesis but that its main function lies in the synthesis of ether lipids, which have acyldihydroxyacetone-phosphate as obligatory precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Upon differential centrifugation of guinea pig intestine mucosal cells homogenate, fatty acyl-CoA:NADPH oxidoreductase (long chain alcohol forming) was found to be enriched in the light mitochondrial (L) fraction (sedimenting between 66,000 x g min and 500,000 x g min) which contained mainly mitochondria, lysosomes, and peroxisomes. Peroxisomes (marker enzymes: catalase and dihydroxyacetone phosphate acyltransferase) present in the L fraction were separated from other organelles in a Nycodenz density gradient centrifugation employing a vertical rotor. By comparing the distribution of acyl-CoA reductase with different marker enzymes in the gradient, it was concluded that this reductase is primarily localized in the microperoxisomes (microbodies). The topography of the membrane-bound enzyme in the isolated organelles was studied by checking its lability toward trypsin in the absence and presence of the detergent Triton X-100. The results suggested that acyl-CoA reductase is localized on the outer surface (cytosolic side) of microperoxisomal membrane.  相似文献   

3.
A method for the preparative isolation of peroxisomes from the livers of rat, guinea pig, and mouse, and also from rat kidney is described. The light mitochondrial fraction, i.e., particles sedimenting between 33,000 and 250,000g-min, or the postnuclear supernatant of liver or kidney, is subjected to a 20-50% Metrizamide density gradient ultracentrifugation in a vertical rotor. After centrifugation, the peroxisomes (marker enzyme catalase and dihydroxyacetone phosphate acyltransferase) sedimented as a band near the bottom of the tube (rho = 1.22 g/ml). From the distribution of different marker enzymes and also from the morphometric examinations, it was demonstrated that the isolated peroxisomes are not contaminated with lysosomes, mitochondria, or microsomes.  相似文献   

4.
The subcellular distribution of delta 3,delta 2-enoyl-CoA isomerase [EC 5.3.3.8] and the inducing effect of clofibrate, a peroxisomal proliferator, on the enzyme activity were examined in rat liver. From the results of spectrophotometric investigation of the fractions, which were prepared by sucrose discontinuous gradient centrifugation from the light mitochondrial fraction, the isomerase activity was found in the fractions enriched in mitochondria and those enriched in peroxisomes of the control and the clofibrate treated rat livers. The anti-isomerase antibody reacted with both the mitochondrial isomerase and the peroxisomal isomerase, revealing a single band with an apparent molecular weight of 30,000. However, the isomerase was induced by clofibrate administration mainly in the mitochondrial fraction. These results suggest that delta 3,delta 2-enoyl-CoA isomerase is located in the mitochondria and the peroxisomes of the normal rat liver, and that the isomerase in the mitochondria is induced by clofibrate administration.  相似文献   

5.
A preparation, similar to the light mitochondrial fraction of rat liver (L fraction of de Duve et al, (1955, Biochem. J. 60: 604-617), was subfractionated by isopycnic centrifugation in a metrizamide gradient and the distribution of several marker enzymes was established. The granules were layered at the top or bottom of the gradient. In both cases, as ascertained by the enzyme distributions, the lysosomes are well separated from the peroxisomes. A good separation from mitochondria is obtained only when the L fraction if set down underneath the gradient. Taking into account the analytical centrifugation results, a procedure was devised to purify lysosomes from several grams of liver by centrifugation of an L fraction in a discontinuous metrizamide gradient. By this method, a fraction containing 10--12% of the whole liver lysosomes can be prepared. As inferred from the relative specific activity of marker enzymes, it can be estimated that lysosomes are purified between 66 and 80 times in this fraction. As ascertained by plasma membrane marker enzyme activity, the main contaminant could be the plasma membrane components. However, cytochemical tests for 5'AMPase and for acid phosphatase suggest that a large part of the plasma membrane marker enzyme activity present in the purified lysosome preparation could be associated with the lysosomal membrane. The procedure for the isolation of rat liver lysosomes described in this paper is compared with the already existing methods.  相似文献   

6.
On subcellular fractionation, the enzyme acyl/alkyl dihydroxyacetone phosphate (DHAP) reductase (EC 1.1.1.101) in guinea pig and rat liver was found to be present in both the light mitochondrial (L) and microsomal fractions. By using metrizamide density gradient centrifugation, it was shown that the alkyl DHAP reductase activity in the "L" fraction is localized mainly in peroxisomes. From the distribution of the marker enzymes it was calculated that about two-thirds of the liver reductase activity is in the peroxisomes and the rest in the microsomes. The properties of this enzyme in peroxisomes and microsomes are similar with respect to heat inactivation, pH optima, sensitivity to trypsin, and inhibition by NADP+ and acyl CoA. The enzyme activity in the peroxisomes and microsomes from mouse liver is increased to the same extent by chronically feeding the animals clofibrate, a hypolipidemic drug. The kinetic properties of this enzyme in these two different organelles are also similar. From these results it is concluded that the same enzyme is present in two different subcellular compartments of liver.  相似文献   

7.
Upon differential centrifugation, the enzyme acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42) in guinea pig liver is shown to sediment in a lysosomal-peroxisomal fraction. Comparison of the distribution of the marker enzymes and of DHAP acyl transferase indicates that the acyl transferase is localized in peroxisomes (microbodies).  相似文献   

8.
Peroxisomal enzyme activities in the guinea-pig harderian gland, which has a unique lipid composition, were studied. Activities of catalase, acyl-CoA oxidase and the cyanide-insensitive acyl-CoA beta-oxidation system in this tissue were comparable with those in rat liver. The activities of dihydroxyacetone phosphate acyltransferase (DHAPAT, EC 2.3.1.42) and alkyl-DHAP synthase (EC 2.5.1.26) were appreciable, and the distributions of both activities were consistent with that of sedimentable catalase activity. Glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15), which is localized in both microsomes (microsomal fractions) and mitochondria in the rat liver, was a peroxisomal enzyme in the harderian gland, though the activity was only about one-tenth of the DHAPAT activity. These enzymes had different pH profiles and substrate specificity. The existence of high activities of enzymes of the acyl-DHAP pathway in peroxisomes suggests the physiological significance of peroxisomes in the biosynthesis of glycerol ether phospholipid and 1-alkyl-2,3-diacylglycerol in the guinea-pig harderian gland.  相似文献   

9.
The subcellular distribution of asparagine:oxo-acid aminotransferase (EC 2.6.1.14) in rat liver was examined by centrifugation in a sucrose density gradient. About 30% of the homogenate activity after the removal of the nuclear fraction was recovered in the peroxisomes, about 56% in the mitochondria, and the remainder in the soluble fraction from broken peroxisomes. The mitochondrial asparagine aminotransferase had identical immunological properties with the peroxisomal one. Glucagon injection to rats resulted in the increase of its activity in the mitochondria but not in the peroxisomes. Immunological evidence was obtained that the enzyme was identical with alanine:glyoxylate aminotransferase 1 (EC 2.6.1.44) which had been reported to be identical with serine:pyruvate aminotransferase (EC 2.6.1.51) (Noguchi, T. (1987) in Peroxisomes in Biology and Medicine (Fahimi, H. D., and Sies, H., eds) pp. 234-243, Springer-Verlag, Heidelberg). The same results as described above were obtained with mouse liver. All of alanine:glyoxylate aminotransferase 1 in livers of mammals other than rodents, which cross-react with the antibody against rat liver alanine:glyoxylate aminotransferase 1, had no asparagine aminotransferase activity.  相似文献   

10.
The subcellular localizations of carnitine acyltransferase and acyl-CoA hydrolase activities with different chain-length substrates were quantitatively evaluated in human liver by fractionation of total homogenates in metrizamide density gradients and by differential centrifugation. Peroxisomes were found to contain 8-37% of the liver acyltransferase activity, the relative amount depending on the chain length of the substrate. The remaining activity was ascribed to mitochondria, except for carnitine octanoyltransferase, for which 25% of the activity was present in microsomal fractions. In contrast with rat liver, where the activity in peroxisomes is very low or absent, human liver peroxisomes contain about 20% of the carnitine palmitoyltransferase. Short-chain acyl-CoA hydrolase activity was found to be localized mainly in the mitochondrial and soluble compartments, whereas the long-chain activity was present in both microsomal fractions and the soluble compartment. Particle-bound acyl-CoA hydrolase activity for medium-chain substrates exhibited an intermediate distribution, in mitochondria and microsomal fractions, with 30-40% of the activity in the soluble fraction. No acyl-CoA hydrolase activity appears to be present in human liver peroxisomes.  相似文献   

11.
Glycerolipid synthetic capacity of rat liver peroxisomes   总被引:2,自引:0,他引:2  
Investigations on rat liver peroxisomal glycerolipid synthetic capability were performed. Highly purified peroxisomal preparations contained dihydroxyacetone-phosphate acyltransferase, acyldihydroxyacetone-phosphate reductase, and fatty acid-CoA ligase activities. Glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, diacylglycerol cholinephosphotransferase, diacylglycerol ethanolaminephosphotransferase and ethanol acyltransferase activities were low in activity or not detected. These results suggest that the peroxisomes are specialized to contribute to the synthesis of ether-linked glycerolipids. If peroxisomes contribute towards the synthesis of non-ether-linked glycerolipids (i.e., ester-linked) then translocation of acyl glycerophosphatide (acyl dihydroxyacetone phosphatide) from peroxisomes to endoplasmic reticulum would be expected to occur.  相似文献   

12.
Subcellular fractions of rat liver were isolated by density-gradient centrifugation on a linear Metrizamide gradient and were assayed for marker enzymes of peroxisomes, lysosomes, microsomes and mitochondria. Alkylglycerone-phosphate synthase catalysing the formation of the ether bond in glycerolipids was also determined along the gradient. The enzyme was found to be enriched in the peroxisomal and the microsomal fractions thus, displaying a bimodal distribution pattern. Two reaction-products each, alkylglycerone phosphate and alkylglycerone were obtained in the enzymic assays performed, the ratio of which was clearly dependent upon the fraction employed. Alkylglycerone phosphate was mainly synthesized by the 'peroxisomal synthase', whereas an inverse proportion was observed assaying the microsomal counterpart. Furthermore, comparing the mean specific activities of both the enzymes the microsomal one was shown to be roughly twice as active in metabolizing 1-O-palmitoylglycerone 3-phosphate, simultaneously displaying a somewhat different sensitivity to NaF. These findings provide a first line of evidence, that two separate synthases, one in microsomes and another one in peroxisomes might be engaged in the biosynthesis of 1-O-alkyl-glycerolipids in rat liver.  相似文献   

13.
The distribution of pyruvate (glyoxylate) aminotransferases in the particulate fraction of rat liver homogenates was examined by centrifugation in a sucrose density graident. Aminotransferase activities towards serine, phenylalanine and histidine with pyruvate and those towards phenylalanine and histidine with glyoxylate were nearly identically distributed. Some 50-55% of the particulate activity was localized in the peroxisomes and the remainder in the mitochondria. Most of alanine-glyoxylate aminotransferase activity was localized in the mitochondria, with some activity in the peroxisomes. Glucagon injection resulted in increases of these enzyme activities in the mitochondria, but not in the peroxisomes.  相似文献   

14.
Liver mitochondria prepared by differential centrifugation are contaminated by significant quantities of peroxisomes and microsomal fractions. 'Easily solubilized carnitine palmitoyltransferase' prepared from liver mitochondria is thought to originate from the outer surface of the mitochondrial inner membrane. We have characterized the carnitine palmitoyltransferase activities of freeze-thaw extracts of rat liver mitochondrial preparations. Chromatography on Sephadex G-100 yields two broad peaks of carnitine decanoyltransferase activity: one eluted at the end of the void volume, which can be removed (precipitated) by ultracentrifugation; the second peak represents the soluble activity and is eluted at an Mr near 70,000. The activity in the soluble peak is precipitated by an antibody raised against carnitine octanoyltransferase purified from mouse liver peroxisomes. In contrast, antibody raised against carnitine palmitoyltransferase purified from liver mitochondrial membranes had no effect (P. Brady & L. Brady, personal communication). The carnitine acyltransferase activities of the Mr-70,000 peak in the presence or absence of Tween 20 showed maximum activity with decanoyl-CoA and about one-third of this activity with palmitoyl-CoA, similar to peroxisomal carnitine octanoyltransferase. These data show that 7500 g preparations of liver mitochondria isolated by differential centrifugation are enriched by peroxisomal carnitine octanoyltransferase (approx. 20% of the protein of the fraction is peroxisomal) and indicate that this enzyme may be the one reported as 'overt' or 'easily solubilized' mitochondrial carnitine palmitoyltransferase.  相似文献   

15.
Peroxisomal (acyl-CoA oxidase and peroxisomal dihydroxyacetone-phosphate acyltransferase) and extraperoxisomal (mitochondrial fatty acid oxidation, extraperoxisomal dihydroxyacetone-phosphate acyltransferase, mitochondrial and microsomal glycerophosphate acyltransferases) lipid-metabolizing enzymes were measured in homogenates from rat liver and from seven extrahepatic tissues. Except for jejunal mucosa and kidney, extrahepatic tissues contained very little acyl-CoA oxidase activity. Peroxisomal dihydroxyacetone-phosphate acyltransferase, taken as the activity that was not inhibited by 5 mM-glycerol 3-phosphate, was present in all tissues examined, and its specific activity in liver and extrahepatic tissues was roughly of the same order of magnitude. Clofibrate treatment increased the activity of acyl-CoA oxidase in liver, and to a smaller extent also in kidney, but did not influence the activity of peroxisomal dihydroxyacetone-phosphate acyltransferase. Comparison of the activities of peroxisomal and extraperoxisomal lipid-metabolizing enzymes in extrahepatic tissues and in liver, an organ in which the contribution of peroxisomes to fatty acid oxidation and to glycerolipid synthesis has been estimated previously, suggests that, as in liver, peroxisomal long-chain fatty acid oxidation is of minor quantitative importance in extrahepatic tissues, but that in these tissues (micro)-peroxisomes are responsible for most of the dihydroxyacetone phosphate acylation and, consequently, for initiating ether glycerolipid synthesis.  相似文献   

16.
We have investigated the intracellular distribution of several enzymes on homogenates of late foetal, early postnatal and adult rat livers. Homogenates were subjected to differential centrifugations in 0.25 M sucrose and four fractions were isolated which corresponded to the N (nuclear) ML (total mitochondrial) P (microsomal) and S (soluble) fractions of de Duve et al. (1955). In general the age of the animal did not significantly affect the distribution pattern. Reference enzymes of mitochondria, lysosomes and peroxisomes were mainly recovered in the total mitochondrial fraction (ML). Glucose-6-phosphatase and esterase, both located in the endoplasmic reticulum, were chiefly associated with the microsomal fraction P together with galactosyltransferase (a reference enzyme of the Golgi apparatus). 5'-Nucleotidase, (a plasma membrane enzyme) exhibits a bimodal distribution and is mainly recovered in the N and the P fractions. Such results indicate that the membrane composition of the fractions isolated by the fractionation scheme was used, does not appreciably differ for the late foetal, early postnatal and adult rat livers. An analytical fractionation of the mitochondrial (ML) fraction of livers at different stages of development was performed by isopycnic centrifugation in sucrose gradients and in glycogen gradients using sucrose solutions of various concentrations as the solvents. The distribution of mitochondria, lysosomes and peroxisomes were assessed by establishing the distribution of their reference enzymes. Some physical characteristics of the particles were deduced from the manner in which the distributions were influenced by the sucrose concentration of the centrifugation medium. The distribution of liver mitochondrial enzymes one day prenatal differs strikingly from that of enzymes one day postnatal; foetal mitochondria seem characterized by a high osmotic space and a high hydrated matrix density; neonatal mitochondria seem devoid of an osmotic space and the density of their hydrated matrix is markedly lower than that of the foetal mitochondria. As ascertained by the distribution of mitochondrial enzymes in a sucrose 2H2O gradient, the high density of a foetal mitochondria matrix does not mainly originate from a lower amount of hydration water. The behavior of lysosomal enzymes in media with increasing concentrations of sucrose suggests that lysosomes originating from late foetal rat liver are endowed with a very small osmotic space. As for the peroxisomes, our results do not display significant behavior differences in centrifugations that would indicate physicochemical changes of these particles during the perinatal period.  相似文献   

17.
A detailed subfractionation of the non-pregnant porcine corpus luteum (CL) was performed employing differential centrifugation. Marker enzyme assays (i.e., lactate dehydrogenase for the cytosol, NADPH-cytochrome P450 reductase for the endoplasmatic reticulum, catalase (CAT) for peroxisomes, glutamate dehydrogenase for the mitochondrial matrix and acid phosphatase for lysosomes) in all subfractions obtained exhibited a pattern of distribution similar to that observed with rat liver. These subfractions should be useful in connection with many types of future studies. In disagreement with previous biochemical and morphological studies, peroxisomes (identified on the basis of catalase activity and by Western blotting of catalase and of the major peroxisomal membrane protein (PMP-70)) sedimented together with mitochondria (i.e., at 5000 x g(av) for 10 min) and not in the post-mitochondrial fraction prepared at 30,000 x g(av) for 20 min by Peterson and Stevensson. No other classical peroxisomal enzymes were detectable in the porcine ovary, raising questions concerning the function of peroxisomes in this organ. Furthermore, UDP-glucuronosyltransferase (UGT), generally considered to be an integral membrane protein anchored in the endoplasmatic reticulum, was recovered in both the cytosolic (i.e., the supernatant after centrifugation at 50,000 x g(av) for 1h) and the microsomal fraction of the porcine corpus luteum, even upon further centrifugation of the former. In contrast, UGT sediments exclusively in the microsomal fraction upon subfractionation of the liver and ovary from rat.  相似文献   

18.
The distribution of alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2) in spinach (Spinacia oleracea) leaf homogenates was examined by centrifugation in a sucrose density gradient. About 55% of the total homogenate activity was localized in the peroxisomes and the remainder in the soluble fraction. The peroxisomes contained a single form of alanine:2-oxoglutarate aminotransferase, and the soluble fraction contained two forms of the enzyme. Both the peroxisomal enzyme and the soluble predominant form (about 90% of the total soluble activity) were co-purified with glutamate:glyoxylate aminotransferase to homogeneity; it had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration [Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. The evidence indicates that alanine:2-oxoglutarate aminotransferase and glutamate:glyoxylate aminotransferase activities are associated with the same protein. The peroxisomal and soluble enzyme preparations had nearly identical properties, suggesting that the soluble predominant alanine aminotransferase activity is from broken peroxisomes and about 96% of the total homogenate activity is located in peroxisomes.  相似文献   

19.
Two types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization. (J Histochem Cytochem 49:1123-1131, 2001)  相似文献   

20.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号