首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formaldehyde-treated serum albumin (f-Alb) is known to be taken up and degraded by sinusoidal liver cells via receptor-mediated endocytosis. We report that 125I-labeled f-Alb (125I-f-Alb) binding to human placental brush-border membranes also occurs. This binding reached equilibrium within 40 min at 37 degrees C. Kinetic studies demonstrated the presence of saturable binding with an apparent Kd of 2.1 micrograms of f-Alb/ml and a maximal binding of 2.3 micrograms/mg of membrane protein at pH 7.5. Maximal binding was observed at between pH 7.5 and 8.0. 125I-f-Alb binding to the membranes was little inhibited by a 1000-fold molar excess of ovalbumin, human apo-transferrin and native bovine serum albumin. No binding was observed with membranes which had been pretreated with proteinase or trypsin. This f-Alb receptor was extremely heat-stable, since the binding was not abolished even by pretreatment of the membranes at 78 degrees C for 30 min. EDTA, Ca2+ and Mg/4 had no effect on 125I-f-Alb binding, so the binding was independent of divalent cations. These data suggest that a receptor specific for f-Alb exists on human placental brush-border membranes of syncytial trophoblasts.  相似文献   

2.
This study systematically examined the characteristics of specific binding of adult diferric transferrin to its receptor using a Triton X-100 solubilized preparation from human placentas as the receptor source. The following information was obtained. The ionic strength for maximal binding is in the range of 0.1-0.3 M NaCl. The pH optimum for specific binding extends over the range, from pH 6.0-10.0. Specific binding of diferric transferrin is not affected by 2.5 approximately 50 mM CaCl2 or by 10 mM EDTA. Triton X-100 in the concentration range of 0.02-3.0% does not affect specific binding. Specific binding is saturated within 10 min at 25 or 37 degrees C in the presence of excess amounts of diferric transferrin. The binding is reversible and the dissociation of diferric transferrin from the transferrin receptor is complete within 40 min at 25 degrees C. Apotransferrin, both adult and fetal, showed less binding than the holotransferrin species by competitive binding assay in the presence of 10 mM EDTA independent of up to 20 mM CaCl2. A 1500-fold molar excess of adult and fetal apotransferrin is required to give 40% inhibition for 125I-labeled diferric transferrin binding. Since calcium ion is not a factor, and since apotransferrin has such high binding affinity for iron (Ka = 1 X 10(24], this experiment suggests that the EDTA was necessary to prevent conversion of apotransferrin to holotransferrin from available iron in the reaction system. The specificity of the transferrin receptor for transferrin was examined by competitive binding studies in which 125I-diferric transferrin binding was measured in the presence of a series of other proteins. The proteins tested in the competitive binding studies were classified into three groups; in the first group were human serum albumin and ovalbumin; in the second group were proteins containing iron ions, such as hemoglobin, hemoglobin-haptoglobin complex, heme-hemopexin complex, ferritin, and diferric lactoferrin; in the third group were the metal-binding serum proteins, ceruloplasmin and metallothionein. None of these proteins except ferritin showed inhibition of diferric transferrin binding to the receptor. The effect of ferritin was small since a 700- to 1500-fold molar excess of ferritin is required for 50% inhibition of binding of diferric transferrin to the receptor.  相似文献   

3.
Plasma membranes have been isolated from the human epidermoid carcinoma cell line A431 by a rapid fractionation of lysate on Percoll density gradient at pH 9.6. Endoplasmic reticulum, lysosomes and mitochondria sedimented at the bottom of gradient whereas plasma membranes focused at low density, as shown with specific markers. Plasma membranes displayed a 4.5- and 4.4-fold enrichment in [3H]concanavalin A and 5'-nucleotidase, respectively. This proteic fraction was further characterized by its lipid composition and phospholipid analysis. The cholesterol/phospholipid molar ratio was 0.45 in plasma membranes against 0.19 in lysate. Sphingomyelin increased from 7.5% of total phospholipids in lysate to 16.2% in plasma membranes, as well as phosphatidylserine which displayed a 1.5-fold enrichment in the plasma membrane fraction. This was at the expense of phosphatidylcholine (45.2% in lysate, against 35% in plasma membranes). Electron microscopy of the isolated material showed vesicles essentially free from endoplasmic reticulum and organelles. These plasma membranes retained the ability to bind 125I-labelled epidermal growth factor (125I-EGF) with a Kd = 4.7 nM and Bmax = 63 pmol/mg protein. EGF binding resulted in a stimulation of the phosphorylation protein reaction in the presence of [gamma-32P]ATP and sodium dodecyl sulfate polyacrylamide gels of phosphorylated proteins indicated that the radioactivity of the major band of molecular weight 170,000 was clearly enhanced by EGF binding. These results indicate that the EGF receptor and its intrinsic protein kinase activity were preserved during our plasma membrane isolation procedure.  相似文献   

4.
It was found that the maximal disattachment of the ribosomes from the membrane structures is observed upon their treatment with 10 mM tris-HCl buffer, pH 7.5, containing 250 mM sucrose, 750 mM KCl, 5 mM magnesium acetate and 1 mM EDTA or puromycin. The most effective attachment of ribosomes to the membrane occurs in 10 mM tris-HCl buffer, pH 7.5, containing 5% sucrose and Mg2+. The increase of Mg2+ concentration in the medium from 0.5 mM up to 1 mM results in a 2-fold increase of the ribosomes bound to the membranes. The concentration of the ribosomal material involved in the reaction is very essential for ribosome binding to the membranes. The amount of ribosomes bound to the membranes increases proportionally to the increase of the ribosome concentration in the reaction mixture.  相似文献   

5.
The binding of 125I-labelled human growth hormone to the 100000g microsomal membrane fraction prepared from the livers of normal female rats was dependent on time, temperature, pH, membrane concentration and concentration of 125I-labelled human growth hormone. At 22 degrees C binding reached a steady state after 16h, with the mean maximal specific binding being 20% of the tracer initially added. Dissociation of 125I-labelled human growth hormone from the membranes, after addition of excess of unlabelled hormone, was relatively slow with a half-time greater than 24h. Only minor degradation of the 125I-labelled human growth hormone was observed during incubation with membranes for 16 or 25h at 22 degrees C. Similarly, no significant change in the ability of membranes to bind human growth hormone was evident after preincubation of the membranes for 16 or 25h. Specificity studies showed that up to 90% of the 125I-labelled human growth hormone bound could be displaced by 1 mug of unlabelled hormone. Ovine prolactin also showed considerable competition for the binding site. Non-primate growth-hormone preparations (ovine, bovine, porcine and rat) and non-related hormones (insulin, thyrotropin, lutropin and follitropin) all showed negligible competition. Scatchard analysis of the binding data was consistent with two classes of binding site with binding affinities of 0.64 X 10(10) +/- 0.2 X 10(10)M-1 and 0.03 X 10(10) +/- 0.007 X 10(10)M-1 and corresponding binding capacities of 98.4 +/- 10 fmol/mg of protein and 314.6 +/- 46.3 fmol/mg of protein. These studies provide data which, in general, are consistent with the criteria required for hormone-receptor interaction. However, proof of the thesis that the human-growth-hormone-binding sites in female rat liver represent physiological receptors must await the demonstration of a correlation between hormone binding and a biological response.  相似文献   

6.
Since the discovery of a specific membrane binding site for sex steroid binding protein (SBP) in human decidual endometrium and in hyperplastic prostate numerous speculations have been raised on the existence of an additional non-receptor-mediated system for steroid hormone action. In the present work SBP cell membrane binding was investigated in human estrogen target tissues other than those previously studied either in the absence of steroids or in the presence of varying amounts (10−10−10−6M) of estradiol, testosterone and dihydrotestosterone, respectively. Plasma membranes obtained by differential centrifugation from homogenized samples of pre-menopausal endometrium, endometrium adenocarcinoma, normal liver and post-menopausal breast showed a specific binding of highly purified [125I]SBP: a major displacement of labeled SBP was elicited by radioinert SBP, while no significant displacement occurred when other human plasma proteins were used as cold competitors (molar excess ranging 500–10,000-fold). A specific, time-dependent binding of [125I]SBP was also observed in MCF-7 and in Hep-G2 cell lines. The different patterns of specific binding, observed in membranes from different tissues when SBP was liganded with different sex steroid molecules, leads us to consider the tissue individuality of the receptor as a further entity in the membrane recognition system for SBP.  相似文献   

7.
We have prepared a conjugate of epidermal growth factor (EGF) and ferritin that retains substantial binding affinity for cell receptors and is biologically active. Glutaraldehyde-activated EGF was covalently linked to ferritin to produce a conjugate that contained EGF and ferritin in a 1:1 molar ratio. The conjugate was separated from free ferritin by affinity chromatography using antibodies to EGF. Monolayers of human epithelioid carcinoma cells (A-431) were incubated with EGF:ferritin at 4 degrees C and processed for transmission electron microscopy. Under these conditions, approximately 6 X 10(5) molecules of EGF:ferritin bound to the plasma membrane of each cell. In the presence of excess native EGF, the number of bound ferritin particles was reduced by 99%, indicating that EGF:ferritin binds specifically to cellular EGF receptors. At 37 degrees C, cell-bound EGF:ferritin rapidly redistributed in the plane of the plasma membrane to form small groups that were subsequently internalized into pinocytic vesicles. By 2.5 min at 37 degrees C, 32% of the cell-bound EGF:ferritin was localized in vesicles. After 2.5 min, there was a decrease in the proportion of conjugate in vesicles with a concomitant accumulation of EGF:ferritin in multivesicular bodies. By 30 min, 84% of the conjugate was located in structures morphologically identified as multivesicular bodies or lysosomes. These results are consistent with other morphological and biochemical studies utilizing 125I-EGF and fluorescein-conjugated EGF.  相似文献   

8.
The binding of biologically active [125I]thyrotropin to purified plasma membranes prepared from bovine thyroid glands was studied. At 4°C, specific binding reached a maximum after 2 h of incubation and a plateau was maintained for up to 20 h. Degradation of [125I]thyrotropin was undetectable after 2 h of incubation and was only 10% of the total after 20 h.At pH 6.0, at which binding was maximal, a single class of binding sites, having a dissociation constant of approx. 25 nM, was evident. Dissociation studies revealed first order kinetics with a half-time of 2–3 min. At pH 7.5, binding curves were complex, suggesting two orders of binding sites with dissociation constants of approx. 200 nM and 80 pM. Further, at this pH, dissociation of the thyrotropin from its receptor was also complex, suggesting the presence of two first order reactions, one with a half-time similar to that seen at pH 6.0 and another with a half-time of 4 h. At both pH 6.0 and 7.5, insulin, glucagon, growth hormone, and prolactin were without effect on [125I]thyrotropin binding.Similar high affinity and low affinity binding sites were seen with porcine thyroid membranes, but only low affinity sites were seen with either rat liver membranes or human cultured lymphocytes.  相似文献   

9.
A dot assay was developed for the detection of membrane receptor(s) for erythropoietin (Ep). A relatively homogeneous population of cells bearing the receptor for Ep was generated in the spleen of mice made anemic with phenylhydrazine and crude membrane extracts were prepared from spleen cell suspensions. Aliquots of the membrane extracts were applied to microdishes of nitrocellulose in a volume of 4 microliters. After free reactive sites were blocked, the microdishes were incubated for 2 h at 37 degrees C with 125I-labeled human recombinant Ep (125I-rEp), and nitrocellulose bound radioactivity was determined thereafter. Reproducible curves were obtained, and a significant correlation between bound radioactivity and the amount of membrane proteins applied to the nitrocellulose dishes was found. Specific binding was saturable, reaching a plateau at 2.5 nM. Binding parameters of nitrocellulose-immobilized receptor were not significantly different from the values calculated using intact cells. No appreciable binding of 125I-rEp to control membranes at low Ep-receptor content was observed. Among a panel of growth factors, only unlabeled rEp was able to compete for the binding of 125I-rEp to nitrocellulose-immobilized membrane proteins in a dose-dependent fashion. The technique described herein may be of use in the study of the Ep receptor and as an assay for its purification. Moreover, it may also be of general application in the study of receptor-ligand interactions.  相似文献   

10.
A simple method for preparing plasma membranes from bovine testes is described. Bovine testicular receptor has a high affinity and specificity for 125I-labelled human FSH (follicle-stimulating hormone). The specific binding of 125I-labelled human FSH to the plasma membranes is a saturable process with respect to the amounts of receptor protein and FSH added. The association and dissociation of 125I-labelled human FSH are time- and temperature-dependent, and the binding of labelled human FSH to bovine testicular receptor is strong and not readily reversible. Scatchard [Ann. N.Y. Acad. Sci. (1949) 51, 660-672] analysis indicates a dissociation constant, Kd, of 9.8 X10(-11)M, and 5.9 X 10(-14)mol of binding sites/mg of membrane protein. The testicular membrane receptor is heat-labile. Preheating at 40 degrees C for 15 min destroyed 30% of the binding activity. Specific binding is pH-dependent, with an optimum between pH 7.0 and 7.5. Brief exposure to extremes of pH caused irreversible damage to the receptors. The ionic strength of the incubation medium markedly affects the association of 125I-labelled human FSH with its testicular receptor. Various cations at concentrations of 0.1M inhibit almost completely the binding of 125I-labelled human FSH. Nuclectides and steroid hormones at concentrations of 1mM and 5mu/ml respectively have no effect on the binding of FSH to its receptor. Incubation of membranes with and chymotrypsin resulted in an almost complete loss of binding activity, suggesting that protein moieties are essential for the binding of 125I-labelled human FSH. Binding of 125I-labelled human FSH to bovine testicular receptor does not result in destruction or degradation of the hormone.  相似文献   

11.
Detection and isolation of a hepatic membrane receptor for ferritin   总被引:3,自引:0,他引:3  
A ferritin receptor has been detected on isolated rat hepatocytes and has been partially purified from rat liver using affinity chromatography. Isolated hepatocytes exhibit approximately 30,000 ferritin binding sites/cell with a binding association constant (Ka) of 1 x 10(8) mol-1 liter. A binding assay has been developed which utilizes a hepatic ferritin receptor coupled to a microparticulate support to facilitate separation of bound and free ligand. This method yielded a Ka of 3 x 10(8) mol-1 liter for the purified hepatic ferritin receptor. Binding of ferritin to the insolubilized receptor was partially inhibited by human lactoferrin but unaffected by 200-fold molar excess of bovine albumin, rat transferrin, or human asialoorosomucoid.  相似文献   

12.
Cell type and tissue distribution of the fibroblast growth factor receptor   总被引:8,自引:0,他引:8  
A receptor for fibroblast growth factor (aFGF, bFGF) was partially characterized in intact cell cultures, cell plasma membranes, and tissue plasma membrane preparations. Analysis of 24 different cell types from four species identified a 165-kDa FGF receptor present on the cell surface of most mesodermal and neuroectodermal cells. Chemical crosslinking of 125I-aFGF to its cell surface receptor was specifically blocked by a 100-fold molar excess of either aFGF or bFGF. In contrast to the similar molecular weight of FGF receptors, different cell types exhibited significant variations in binding of 125I-aFGF to intact cultures with low values of 8 pM and 700, to high values of 60 pM and 30,000, for the Kd and receptor number per cell, respectively. A binding assay was developed for quantitation of 125I-aFGF binding to cell- and tissue-derived membrane preparations. Membranes prepared from baby hamster kidney cells exhibited a Kd of 55 pM, while a similar Kd of 67 pM was determined for intact baby hamster kidney cells. Although ten different adult bovine tissue membrane preparations and human term placental membranes exhibited no specific binding of 125I-aFGF, FGF receptor was detected in embryonic murine tissues (17 days gestation). These results support the existence, in a variety of cells, of either a common FGF receptor that binds both aFGF and bFGF or closely related FGF receptors that cannot be distinguished by molecular weight. The differential binding of FGF to its receptor in embryonic vs. adult tissues suggests a potentially broad role for FGF in embryonic development and a more restrictive role in the adult.  相似文献   

13.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

14.
The behavior of holo-retinol-binding protein (RBP) from human plasma at alkaline pH was examined by absorption and circular dichroism measurements. Between pH 7.5 and 11.7 the ionization of the phenolic hydroxyl groups is reversible. However, there is a gradual irreversible loss of retinol as the pH is raised. After 4 hours at pH 11.7, 13 percent of retinol is lost from retinol-RBP. Alkaline titration of apo-RBP was time-independent and reversible between pH 7.5 and 11.7. The titration data of the phenolic hydroxyl groups in apo-RBP could be fitted with a single theoretical ionization curve of 8.6 phenolic groups having an apparent pK of 11. Acetylation of retinol-RBP with 10-fold molar excess of N-acetylimidazole over tyrosine resulted in the acetylation of all lysine residues and in the acetylation of 0.9 to 1.3 tyrosyl residues per molecule (out of eight). Acetylation of retinol-RBP, APO-RBP, and retinol-RBP-prealbumin complex with 50-fold molar excess of N-acetylimidazole resulted, again, with all of the lysine residues being acetylated and between 1.8 and 2.8 tyrosyl residues per molecule being acetylated. The acetylation did not affect the interaction between retinol and RBP. However, acetylation disrupted the normal binding between retinol-RBP and prealbumin. Deacetylation of tyrosyl residues with hydroxylamine failed to restore the normal binding of retinol-RBP to prealbumin. This excludes the acetylated tyrosyl-residues from being involved in the binding between the two proteins.  相似文献   

15.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

16.
《The Journal of cell biology》1989,109(6):2833-2840
We have investigated the association of actin with membranes isolated from rat liver. A plasma membrane-enriched fraction prepared by homogenization in a low salt/CaCl2 buffer was found to contain a substantial amount of residual actin which could be removed by treatment with 1 M Na2CO3/NaHCO3, pH 10.5. Using a sedimentation binding assay that uses gelsolin to shorten actin filaments and render membrane binding saturable (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102:2067-2075), we found that membranes stripped of endogenous actin bound 125I-actin in a specific and saturable manner. Scatchard plots of binding data were linear, indicating a single class of binding sites with a Kd of 1.6 microns; 66 micrograms actin bound/mg membrane protein at saturation. Binding of actin to liver cell membranes was negligible with unstripped membranes, was competed by excess unlabeled actin, and was greatly reduced by preheating or proteolytic digestion of the membranes. Kinetic measurements showed that binding had an initial lag phase and was strongly temperature dependent. The binding of actin to liver cell membranes was also found to be competitively inhibited by ATP and other nucleotides, including the nonhydrolyzable analogue AMP-PNP. We conclude that we have reconstituted an interaction between actin and integral membrane proteins from the rat liver. This interaction exhibits a number of distinctive features which have not been observed in other actin- membrane systems.  相似文献   

17.
The interactions of horse spleen ferritin and its derivative apoferritin with H+ ions were studied by potentiometric and spectrophotometric titration; to aid in data analysis, heats of ionization over a limited pH range and amide content were also determined. Per apoferritin subunit, all tyrosine and cysteine side chains, two of the nine lysine side chains and at least three of the six histidine side chains were found not to titrate; a preliminary but self-consistent analysis of the titration data is proposed. The titration curve of ferritin was identical with that of apoferritin in the pH range 5.5 to 3. In addition, under the conditions used, the reactivities of ferritin histidines to bromoacetate and of ferritin lysines to formaldehyde were identical with those in apoferritin. Above pH 8, a time-dependent titration of the ferritin core occurs which prevents comparison of the titration curves of the two proteins in this region. However, in the pH regions 5.5 to 7.5, two extra groups per subunit titrate reversibly in ferritin relative to apoferritin. Moreover, although the isoionic points of ferritin and apoferritin are identical in water, the isoionic point of ferritin is 0.5 pH unit lower than that of apoferritin in 0.16 to 1 M KCl. The different effects of KCl and NaCl on the two proteins indicate the presence of cation binding sites in ferritin that are absent in apoferritin and possibly also the presence of anion binding sites in apoferritin that are occupied in ferritin by anions of the core. The difference between the isoionic points of the two proteins in KCl has been interpreted to indicate the presence of approximately 2 phosphate residues per ferritin subunit which serve as cation binding sites and which are negatively charged at the isoionic point in KCl. These phosphates may also represent the additional residues that titrate in ferritin between pH 5.5 and 7.5, or may interact with positively charged residues on the inner surface of the ferritin shell, or both.  相似文献   

18.
Binding sites for calcitonin (CT), as assayed by the displacable binding of [125-I] iodo salmon CT ([125-I]sCT), were found on a membrane fraction prepared from rat brain. The half times of association varied between 23 and 7 min as a function of the temperatures used in the incubation medium, ranging from 6° to 37°C. Salmon CT in amounts as low as 10?10 M inhibited the binding of [125-I]sCT to the membranes, whereas the virtually biologically inactive free acid of human CT and human CT sulfone did not affect the binding. The specific binding of [125-I]sCT to the membranes was directed to structural and/or conformational features in the COOH-terminal half of salmon CT. 133 to 8,900 times higher amounts of porcine CT and human CT and analogues thereof were required to achieve an inhibition of binding equal to that produced by salmon CT. Sixty-seven percent of specific binding of labeled hormone was not dissociable, even after 6 h of incubation with an excess of unlabeled hormone. [125-I]sCT extracted from the membranes was not degraded, as judged by gel permeation chromatography, and retained binding activity. Specific binding was highest in the hypothalamus, followed by the brainstem. It was intermediate in the midbrain-thalamus and the striatum, lower in the cortex and negligible in the hippocampus, and cerebellum and the spinal cord.  相似文献   

19.
The binding of rat 125I-labelled high-density lipoprotein (HDL) to rat kidney membranes was studied using HDL fractions varying in their apolipoprotein E content. The apolipoprotein E/apolipoprotein A-I ratio (g/g) in the HDL fractions ranged from essentially 0 to 1.5. All these HDL preparations showed the same binding characteristics. The saturation curves, measured at 0 degrees C in the presence of 2% bovine serum albumin, consisted of two components: low-affinity non-saturable binding and high-affinity binding (Kd about 40 micrograms of HDL protein/ml). Scatchard analyses of the high-affinity binding suggest a single class of non-interacting binding sites. These sites could be purified together with the plasma membrane marker enzyme 5'-nucleotidase. The binding of rat HDL to rat kidney membranes was not sensitive to high concentrations of EDTA, relatively insensitive to pronase treatment and influenced by temperature. The specific binding of rat HDL was highest at acid pH and showed an additional optimum at pH 7.5. On a total protein basis unlabelled rat VLDL competed as effectively as unlabelled rat HDL for binding of 125I-labelled rat HDL to partially purified kidney membranes. Rat LDL, purified by chromatography on concanavalin A columns and human LDL did not compete. Unlabelled human HDL was a much weaker competitor than unlabelled rat HDL and the maximal specific binding of 125I-labelled human HDL was only 10% of the value for 125I-labelled rat HDL.  相似文献   

20.
Thyroglobulin binds to isolated thyroid plasma membrane preparations. Binding is pH- and temperature-dependent with 10-fold better binding at pH 5.0 and 37 degrees C than at 0 degrees C and pH 6.0 through pH 7.5. Binding is, however, maximal in 90 min at all pH values and temperatures examined. Although salts can inhibit or enhance thyroglobulin binding depending on the temperature or pH, conditions approaching those of the physiological state are not inhibitory; physiological conditions do inhibit thyrotropin binding to the same membrane preparations. 125I-Labeled thyroglobulin binding is poorly reversed by unlabeled thyroglobulin at all pH values and temperatures studied; excess unlabeled thyroglobulin can, however, readily prevent binding. At pH values greater than 6.0 and at 0 degrees C, the iodine content of thyroglobulin can affect binding, and the 27 S thyroid iodoprotein is relatively ineffective in preventing the binding of the 19 S species. At pH 5.0 and 37 degrees C, there is no difference in binding of highly and less iodinated thyroglobulin, and the 27 S thyroglobulin iodoprotein is effective in preventing 19 S thyroglobulin binding. The complex nature of these results is interpreted in the light of additional data which show (i) that the thyroid membrane recognizes asialothyroglobulin and (ii) that at pH 5.0 and 37 degrees C a membrane-associated neuraminidase is activated which removes sialic acid from thyroglobulin. Vibrio cholerae neuraminidase can substitute for the endogenous neuraminidase. The receptor on thyroid membranes for asialothyroglobulin is similar to the asialoglycoprotein receptor on liver membranes (Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J., and Ashwell, G. (1971) J. Biol. Chem. 246, 1461-1467) in that sialic acid on the receptor is critical for receptor expression. It is distinct from the liver asialoglycoprotein receptor in its binding specificity and in its sensitivity to different bacterial and mammalian neuraminidase preparations. Relationships between thyroglobulin and thyrotropin receptors on thyroid membranes are explored, and the functional role of the thyroglobulin receptor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号