首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stopped-flow kinetic and fluorescence spectroscopic analyses, including solvent and temperature perturbations, of five isofunctional structural mutants of calmodulin indicate that calcium binding to calmodulin follows the order site III, site IV, site I, site II, with dissociation occurring in the reverse order. Each of the isofunctional structural mutants contains a single tryptophan residue, introduced by site-specific mutagenesis, as an internal spectroscopic reporter group that was used as a probe of local conformational change. Calcium binding was studied by using flow dialysis or by using fluorescence spectroscopy and monitoring the change in the single tryptophan residue in each calcium-binding site. Calcium removal was examined by using EDTA and monitoring tryptophan fluorescence or by using Quin 2 and monitoring the change in the chromophoric chelator. Computational analysis of the data suggests a rate-limiting step for dissociation between calcium removal from sites I/II and sites III/IV. Unexpected results with the site IV isofunctional mutant (Q135W-CaM) indicated cross-talk between the amino and carboxyl terminal halves of CaM during the calcium-binding mechanism. Studies with ethylene glycol provided empirical data that suggest the functional importance of the electrostatic potential of CaM, or the molarity of water, in the calcium-binding process. Altogether, the data allowed a kinetic extension of the sequential, cooperative model for calcium binding to calmodulin and provided values for additional parameters in the model of calcium binding to CaM, a prototypical member of the family of proteins required for calcium signal transduction in eukaryotic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
An engineered calmodulin (VU-9 calmodulin), which possesses a single tryptophan residue at position 99 in calcium binding domain III, was studied by time-resolved fluorescence. At least two exponential terms are needed to describe the tryptophan fluorescence decays, either in the presence or in the absence of calcium. The characteristics of the fluorescence decays are strongly dependent upon the number of calcium ions bound per molecule of VU-9 calmodulin until half of the calcium sites are occupied, i.e., three in the absence of magnesium and two in the presence of 5 mM magnesium. A clear time-dependent spectral shift is observed in the presence of calcium. The existence of an isosbestic point in the time-resolved spectra is in agreement with a two-state model. The biexponential analysis of the 340-nm fluorescence decay during calcium titration gives parameters consistent with a two-state model in which tryptophan 99 interconverts between two different conformations, characterized by a different lifetime value, with rates altered by calcium binding. This model explains the decrease in the protein quantum yield induced by calcium binding [Kilhoffer, M. C., Roberts, D. M. Adibi, A. O., Watterson, D. M., & Haiech, J. (1989) Biochemistry (preceding paper in this issue)].  相似文献   

3.
Fluorescence energy transfer analysis of calmodulin-peptide complexes.   总被引:2,自引:0,他引:2  
The interactions between calmodulin and the tryptophan residues of synthetic peptides corresponding to the calmodulin binding domains of skeletal muscle myosin light-chain kinase and the plasma membrane calcium pump were examined. The single tryptophan residue contained in each peptide became relatively immobilized and inaccessible to iodide ion upon binding to calmodulin, indicating that the indole side chain was inserted into a hydrophobic cleft in the surface of calmodulin. Fluorescence energy transfer from peptidyl tryptophan residues to an AEDANS moiety attached to cysteine-26 of spinach calmodulin was measured. Included in these analyses was a tryptophan-containing peptide analog of the calmodulin binding domain of neuromodulin. These data indicated that the indole ring of each peptide inserted 32-35 A away from cysteine-26 and may therefore interact with the carboxyl-terminal lobe of CaM in its "bent" conformation [Persechini & Kretsinger (1988a) J. Cardiovasc. Pharmacol. 12 (Suppl 5), S1-S12; Ikura et al. (1992) Science 256, 632-638; Vorherr et al. (1992) Eur. J. Biochem. 204, 931-937]. The interchange of tryptophan-3 and phenylalanine-21 of the calcium pump peptide increased the efficiency of energy transfer to the AEDANS-moiety approximately 12-fold, reducing the calculated distance to 20 A. These data suggest that phenylalanine-21 of the calcium pump peptide interacts with the hydrophobic cleft in the amino-terminal lobe of CaM.  相似文献   

4.
Calmodulin is the most ubiquitous calcium binding protein. The protein is very sensitive to oxidation and this modification has pronounced effects on calmodulin function. In this work, we decided to fully oxidise calmodulin in order to study the consequences on cation binding, domain stability, and alpha helicity. Oxidation of methionines unfolds completely the apostate of the protein, which upon calcium binding recovers the major part of its secondary and tertiary structure. However, the unstructuring of the apostate results in a protein that binds calcium to any site in an independent manner, does not bind magnesium and does not possess auxiliary sites anymore.  相似文献   

5.
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.  相似文献   

6.
We examined the tryptophan decay kinetics of sarcoplasmic reticulum Ca2+-ATPase using frequency-domain fluorescence. Consistent with earlier reports on steady-state fluorescence intensity, our intensity decays reveal a reproducible and statistically significant 2% increase in the mean decay time due to calcium binding to specific sites involved in enzyme activation. This Ca2+ effect could not be eliminated with acrylamide quenching, which suggests a global effect of calcium on the Ca2+-ATPase, as opposed to a specific effect on a single water-accessible tryptophan residue. The tryptophan anisotropy decays indicate substantial rapid loss of anisotropy, which can be the result of either intramolecular energy transfer or a change in segmental flexibility of the ATPase protein. Energy transfer from tryptophan to TNP-ATP in the nucleotide binding domain, or to IEADANS on Cys-670 and -674, indicates that most tryptophan residues are 30 A or further away from these sites and that this distance is not decreased by Ca2+. In light of known structural features of the Ca2+-ATPase, the tryptophan fluorescence changes are attributed to stabilization of clustered transmembrane helices resulting from calcium binding.  相似文献   

7.
R E Reid 《Biochemistry》1987,26(19):6070-6073
The sequential solid-phase synthesis of a peptide analogue of bovine brain calmodulin calcium binding site III covering residues 81-113 of the natural sequence is described. Methionine-109 is replaced by a leucine residue to avoid complications in the synthesis and purification. In an attempt to relate the structure of the calcium binding sites in the naturally occurring calcium binding protein to the calcium affinity of these sites, the synthetic analogue is examined for calcium binding by circular dichroism spectroscopy. The calcium binding characteristics are compared to those of a synthetic analogue of the homologous calcium binding site III in rabbit skeletal troponin C. The Kd of the calmodulin site III fragment for Ca2+ is determined as 878 microM whereas the Kd of the troponin C fragment is 30 times smaller at 28 microM. Structural changes induced in the peptides by Ca2+ and trifluoroethanol are similar. This study supports our contention that the single synthetic calcium binding site is a reasonable model for the study of the structure-activity relationships of the calcium binding sites in calcium-regulated proteins such as calmodulin and troponin C.  相似文献   

8.
The acid pair hypothesis describing the interaction of calcium with the helix-loop-helix conformation of EF hands in calmodulin and related proteins predicts that these calcium-binding sites will have increased affinity for calcium if the anionic amino acid dentates in the loop region which interact directly with the cation are paired on the axial vertices of the resulting octahedral arrangement of chelating residues about the cation. As a test of this hypothesis, synthetic 33 residue analogs of bovine brain calmodulin calcium-binding site III have been prepared by the solid-phase method and analyzed for calcium affinity. The native sequence has a Kd of 735 microM for calcium and contains three anionic ligands which assume the +x, +y, and -z coordinates of the octahedral arrangement about the cation, thus precluding any pairing of the anionic ligands. This dissociation constant is 26 times weaker than that obtained from a synthetic analog of the sequentially homologous calcium-binding site III of rabbit skeletal TnC (Kd = 28 microM) which has four anionic ligands paired on the x and z axes. An analog of calmodulin site III with substitutions in the chelating residues at positions 1, 3, 5, 7, 9, and 12 of the 12-residue loop region to make these positions identical to those of rabbit skeletal troponin C site III decreased the calcium dissociation constant of the calmodulin peptide to 19 microM, similar to the troponin C peptide. Two synthetic analogs of calmodulin site III which contain three anionic ligands with two ligands paired on the x axis and two on the z axis have a Kd for calcium of 524 and 59 microM, respectively. This study provides strong support for and a better definition of the acid pair hypothesis and further demonstrates the usefulness of synthetic calcium-binding fragments in delineating the mechanism of calcium regulation of calmodulin and related proteins.  相似文献   

9.
Calcium and calmodulin both regulate the skeletal muscle calcium release channel, also known as the ryanodine receptor, RYR1. Ca(2+)-free calmodulin (apocalmodulin) activates and Ca(2+)-calmodulin inhibits the ryanodine receptor. The conversion of calmodulin from an activator to an inhibitor is due to Ca(2+) binding to calmodulin. We have previously shown that the binding sites for apocalmodulin and Ca(2+)-calmodulin on RYR1 are overlapping with the Ca(2+)-calmodulin site located slightly N-terminal to the apocalmodulin binding site. We now show that mutations of the calcium binding sites in either the N-terminal or the C-terminal lobes of calmodulin decrease the affinity of calmodulin for the ryanodine receptor, suggesting that both lobes interact with RYR1. Mutation of the two C-terminal Ca(2+) binding sites of calmodulin destroys calmodulin's ability to inhibit ryanodine receptor activity at high calcium concentrations. The mutated calmodulin, however, can still bind to RYR1 at both nanomolar and micromolar Ca(2+) concentrations. Mutating the two N-terminal calcium binding sites of calmodulin does not significantly alter calmodulin's ability to inhibit ryanodine receptor activity. These data suggest that calcium binding to the two C-terminal calcium binding sites within calmodulin is responsible for the switching of calmodulin from an activator to an inhibitor of the ryanodine receptor.  相似文献   

10.
11.
Among numerous protein kinases found in mammalian cell systems there is a distinct subfamily of serine/threonine kinases that are regulated by calmodulin or other related activators in a calcium concentration dependent manner. Members of this family are involved in various cellular processes like cell proliferation and death, cell motility and metabolic pathways. In this contribution we shall review the available structural biology data on five members of this kinase family (calcium/calmodulin dependent kinase, twitchin kinase, titin kinase, phosphorylase kinase, myosin light chain kinase). As a common element, all these kinases contain a regulatory tail, which is C-terminal to their catalytic domain. The available 3D structures of two members, the serine/threonine kinases of the giant muscle proteins twitchin and titin in the autoinhibited conformation, show how this regulatory tail blocks their active sites. The structures suggest that activation of these kinases requires unblocking the active site from the C-terminal extension and conformational rearrangement of the active site loops. Small angle scattering data for myosin light chain kinase indicate a complete release of the C-terminal extension upon calcium/calmodulin binding. In addition, members of this family are regulated by diverse add-on mechanisms, including phosphorylation of residues within the activation segment or the P+1 loop as well as by additional regulatory subunits. The available structural data lead to the hypothesis of two different activation mechanisms upon binding to calcium sensitive proteins. In one model, the regulatory tail is entirely released ("fall-apart"). The alternative model ("looping-out") proposes a two-anchored release mechanism.  相似文献   

12.
We have studied the effect of Ruthenium red on the sarcoplasmic reticulum Ca(2+)-ATPase. Ruthenium red does not modify the Ca2+ pumping activity of the enzyme, despite its interaction with cationic binding sites on sarcoplasmic reticulum vesicles. Two pools of binding sites were distinguished. One pool (10 nmol/mg) is dependent upon the presence of micromolar Ca2+ and may therefore represent the high-affinity Ca2+ transport sites of the Ca(2+)-ATPase. However, Ruthenium red only slightly competes with Ca2+ on these sites. The other pool (15-17 nmol/mg) is characterized as low-affinity cation binding sites of sarcoplasmic reticulum, distinct from the Mg2+ site involved in the ATP binding to the Ca(2+)-ATPase. The interaction of Ruthenium red with these low-affinity cation binding sites, which may be located either on the Ca(2+)-ATPase or on surrounding lipids, decreases tryptophan fluorescence level of the protein. As much as 25% of the tryptophan fluorescence of the Ca(2+)-ATPase is quenched by Ruthenium red (with a dissociation constant of 100 nM), tryptophan residues located near the bilayer being preferentially affected.  相似文献   

13.
Peptide-induced conformational changes in five isofunctional mutants of calmodulin (CaM), each bearing a single tryptophan residue either at the seventh position of each of the four calcium-binding loops (i.e., amino acids 26, 62, 99, and 135) or in the central helix (amino acid 81) were studied by using fluorescence spectroscopy. The peptides RS20F and RS20CK correspond to CaM-binding amino acid sequence segments of either nonmuscle myosin light chain kinase (nmMLCK) or calmodulin-dependent protein kinase II (CaMPK-II), respectively. Both steady-state and time-resolved fluorescence data were collected from the various peptide-CaM complexes. Steady-state fluorescence intensity measurements indicated that, in the presence of an excess of calcium, both peptides bind to the calmodulin mutants with a 1:1 stoichiometry. The tryptophans located in loops I and IV exhibited red-shifted emission maxima (356 nm), high quantum yields (0.3), and long average lifetimes (6 ns). They responded in a similar manner to peptide binding, by only slight changes in their fluorescence features. In contrast, the fluorescence intensity of the tryptophans in loops II and III decreased markedly, and their fluorescence spectrum was blue-shifted upon peptide binding. Analysis of the tryptophan fluorescence decay of the last mentioned calmodulins supports a model in which the equilibrium between two (Trp-99) or three (Trp-62) states of these tryptophan residues, each characterized by a different lifetime, was altered toward the blue-shifted short lifetime component upon peptide binding. Taken together, these data provide new evidence that both lobes of calmodulin are involved in peptide binding. Both peptides induced similar changes in the fluorescence properties of the tryptophan residues located in the calcium-binding loops, with the exception of calmodulin with Trp-135. For this last mentioned calmodulin, slight differences were observed. Tryptophan in the central helix responded differently to RS20F and RS20CK binding. RS20F binding induced a red-shift in the emission maximum of Trp-81 while RS20CK induced a blue-shift. The quenching rate of Trp-81 by iodide was slightly reduced upon RS20CK binding, while RS20F induced a 2-fold increase. These results provide evidence that the environment of Trp-81 is different in each case and are, therefore, consistent with the hypothesis that the central helix can play a differential role in the recognition of, or response to, CaM-binding structures.  相似文献   

14.
Androcam is a testis-specific protein of Drosophila melanogaster, with 67% sequence identity to calmodulin and four potential EF-hand calcium-binding sites. Spectroscopic monitoring of the thermal unfolding of recombinant calcium-free androcam shows a biphasic process characteristic of a two-domain protein, with the apo-N-domain less stable than the apo-C-domain. The two EF hands of the C-domain of androcam bind calcium cooperatively with 40-fold higher average affinity than the corresponding calmodulin sites. Magnesium competes with calcium binding [Ka(Mg) approximately 3 x 10(3) M(-1)]. Weak calcium binding is also detected at one or more N-domain sites. Compared to apo-calmodulin, apo-androcam has a smaller conformational response to calcium and a lower alpha-helical content over a range of experimental conditions. Unlike calmodulin, a tryptic cleavage site in the N-domain of apo-androcam remains trypsin sensitive in the presence of calcium, suggesting an altered calcium-dependent conformational change in this domain. The affinity of model target peptides for androcam is 10(3)-10(5) times lower than for calmodulin, and interaction of the N-domain of androcam with these peptides is significantly reduced. Thus, androcam shows calcium-induced conformational responses typical of a calcium sensor, but its properties indicate calcium sensitivity and target interactions significantly different from those of calmodulin. From the sequence differences and the altered calcium-binding properties it is likely that androcam differs from calmodulin in the conformation of residues in the second calcium-binding loop. Molecular modeling supports the deduction that there are significant conformational differences in the N-domain of androcam compared to calmodulin, and that these could affect the surface, conferring a different specificity on androcam in target interactions related to testis-specific calcium signaling functions.  相似文献   

15.
I M Ota  S Clarke 《Biochemistry》1989,28(9):4020-4027
We have previously shown that the D-aspartyl/L-isoaspartyl protein carboxyl methyltransferase recognizes two major sites in affinity-purified preparations of bovine brain calmodulin that arise from spontaneous degradation reactions. These sites are derived from aspartyl residues at positions 2 and 78, which are located in apparently flexible regions of calmodulin. We postulated that this flexibility was an important factor in the nonenzymatic formation and enzymatic recognition of D-aspartyl and/or L-isoaspartyl residues. Because removal of Ca2+ ions from this protein may also lead to increased flexibility in the four Ca2+ binding regions, we have now characterized the sites of methylation that occur when calmodulin is incubated in buffers with or without the calcium chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,-N',N'-tetraacetic acid (EGTA). Calmodulin was treated at pH 7.4 for 13 days at 37 degrees C under these conditions and was then methylated with erythrocyte D-aspartyl/L-isoaspartyl methyltransferase isozyme I and S-adenosyl-L-[methyl-3H]methionine. The 3H-methylated calmodulin product was purified by reverse-phase HPLC and digested with various proteases including trypsin, chymotrypsin, endoproteinase Lys-C, clostripain, and Staphylococcus aureus V8 protease, and the resulting peptides were separated by reverse-phase HPLC. Peptides containing Asp-2 and Asp-78, as well as calcium binding sites II, III, and IV, were found to be associated with radiolabel under these conditions. When calmodulin was incubated under the same conditions in the presence of calcium, methylation at residues in the Ca2+ binding regions was not observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A calcium binding protein from Drosophila melanogaster has been isolated and characterized. This protein shows several analogies with pig brain calmodulin in its molecular weight, isoelectric point, peptide maps, calcium binding properties, and ability to activate cyclic AMP phosphodiesterase. However, some differences were observed; the most remarkable one is the presence of tryptophan, an amino acid which is absent from all the calmodulins analyzed previously.  相似文献   

17.
The kinetics of cadmium and terbium dissociation from bovine testis calmodulin and its tryptic fragments have been studied by stopped-flow fluorescence methods, using the calcium indicator Quin 2. Studies of the tryptic fragments TR1C and TR2C, comprising the N-terminal or C-terminal half of calmodulin, have clearly identified cadmium binding sites I and II as the low-affinity (rapidly dissociating) sites and sites III and IV as the high-affinity (slowly dissociating) sites. Thus the site preference of cadmium is the same as that of calcium. For terbium, however, sites I and II are the high-affinity sites and sites III and IV are the low-affinity sites. Thus, the site preference or terbium is not the same as that of calcium and cadmium. In contrast to previous studies with calcium, we observe two kinetic processes for dissociation from sites III and IV for experiments with both cadmium and terbium. Possible models for the binding of metal ions are discussed.  相似文献   

18.
Aquaporin 0 (AQP0), also known as major intrinsic protein of lens, is the most abundant membrane protein in the lens and it undergoes a host of C-terminally directed posttranslational modifications. The C-terminal region containing the major phosphorylation sites is a putative calmodulin-binding site, and calmodulin has been shown to regulate AQP0 water permeability. The purpose of the present study was to elucidate the role of AQP0 phosphorylation on calmodulin binding. AQP0 C-terminal peptides were synthesized with and without serine phosphorylation on S231 and S235, and the ability of these peptides to bind dansyl-labeled calmodulin and the calcium dependence of the interaction was assessed using a fluorescence binding assay. The AQP0 C-terminal phosphorylated peptides were found to have 20-50-fold lower affinities for calmodulin than the unphosphorylated peptide. Chemical cross-linking studies revealed specific sites of AQP0-calmodulin interaction that are significantly reduced by AQP0 phosphorylation. These data suggest that AQP0 C-terminal phosphorylation affects calmodulin binding in vivo and has a role in regulation of AQP0 function.  相似文献   

19.
Metal ion binding to calmodulin: NMR and fluorescence studies   总被引:13,自引:0,他引:13  
Calmodulin is an important second messenger protein which is involved in a large variety of cellular path-ways.Calmodulin is sensitive to fluctuations in the intracellular Ca levels and is activated by the bindingof four Ca ions. In spite of the important role it plays in signal transduction pathways, it shows a surpris-inglybroad specificity for binding metal ions. Using 15N-Gly biosynthetically-labelled calmodulin, we havestudied the binding of different metal ions to calmodulin, including K+, Na+, Ca, Mg, Zn, Cd, Pb, Hg, Sr, La and Lu, by 1H, 15N HMQC NMR experiments. The effects of these ions on the substrate-bindingability of calmodulin have also been studied by fluorescence spectroscopy of the single tryptophan residue in a 22-residue synthetic peptide encompassing the skeletal muscle myosin light chain kinase calmod-ulin-binding domain. Most of these metal ions can activate a calmodulin target enzyme to some extent,though they bind to calmodulin in a different manner. Mg, which is of direct physiological interest, has adistinct site-preference for calmodulin, as it shows the highest affinity for site I in the N-terminal domain,while the C-terminal sites III and IV are the high affinity binding sites for Ca (as well as for Cd ). At ahigh concentration of Mg and a low concentration of Ca, calmodulin can bind Mg in its N-terminallobe while the C-terminal domain is occupied by Ca; this species could exist in resting cells in which the Mg level significantly exceeds that of Ca. Moreover, our data suggest that the toxicity of Pb-which,like Sr, binds with an equal and high affinity to all four sites-may be related to its capacity to tightlybind and improperly activate calmodulin.  相似文献   

20.
The parameters of inhomogeneous broadening in the fluorescence spectra of 1-anilinonaphthalene-8-sulfonate and N-phenyl-1-naphthylamine, recorded in the systems with respective proteins, have been analyzed in order to shed light on the mechanism of interaction between Ca2+ ions and calmodulin, troponin C and parvalbumin. It was shown that only calmodulin and troponin C but not parvalbumin bind calcium ions with concomitant formation of hydrophobic sites that are responsible for interaction with the "executor enzymes". The relative pools of the probes adsorbed in the hydrophobic sites and polarity of the latter were assessed. These parameters in calmodulin obtained from the brain of spontaneously hypertensive rats or normotensive rats do not differ. It was established that trifluoroperazine and verapamil inhibit the calmodulin-dependent enzymes by essentially different mechanisms. Trifluoroperazine diminishes the relative pool of the adsorbed probe and enhances the polarity of the calmodulin binding sites, whereas verapamil affects these parameters in the opposite direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号