首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-activating factor (PAF), an ether lipid mediator released from activated pulmonary phagocytes, was evaluated for its ability to affect cytochrome P-450-dependent activities in isolated rat alveolar type II cells. The data indicate that at non-toxic doses, PAF caused an increase in beta-naphthoflavone (BNF) inducible/alpha-naphthoflavone (ANF) sensitive ethoxyphenoxazone deethylase (EtOPx'ase) activity. At high concentrations of PAF, inhibition of both EtOPx'ase and metyrapone (MP) sensitive benzyloxyphenoxazone debenzylase (BzOPx'ase) activities and aggregation of type II cells were observed. The PAF analogs, lyso-PAF and enantio-PAF, exhibited actions similar to those observed with PAF. PAF-induced enhancement of EtOPx'ase activity required the presence of intact cells, whereas at high PAF concentrations decreased enzyme activities were observed in both intact cell and sonicated cell preparations. The data thus suggest that xenobiotic metabolism in alveolar type II cells can be modified by an inflammatory mediator, such as PAF, produced by alveolar phagocytes.  相似文献   

2.
Rat liver microsomes contain type-1 S6 phosphatase (acting on the serine residues phosphorylated by protein kinase A) and type-1 phosphorylase phosphatase activities. The main aim of this study has been to characterize the microsomal S6 phosphatase activity and to compare its properties with those of the phosphorylase phosphatase activity in the same microsomal preparation. The specific activities of both microsomal S6 phosphatase and phosphorylase phosphatase were 1.6- to 1.7-fold higher in the smooth endoplasmic reticulum than in the rough sarcoplasmic reticulum. Both phosphatase activities were inhibited to a similar extent by MgCl2 (10 mM) and NaF (22 mM), were completely suppressed by glycerophosphate (80 mM) and ZnCl2(10 mM), and were stimulated by MnCl2(1 mM). When analyzed by gel filtration on Sephadex G-100 superfine, both phosphatase activities eluted as broad peaks, stretching from the void volume to 45-60 kDa. The microsomal S6 phosphatase and phosphorylase phosphatase activities also displayed the following distinct characteristics: (a) Mn2+ stimulated the S6 phosphatase activity 2.9-fold more than the phosphorylase phosphatase activity, (b) limited trypsin digestion of microsomal preparations increased the phosphorylase phosphatase activity by 1.5- to 2-fold, but decreased the S6 phosphatase activity by 50%, (c) a synthetic peptide analog of S6 (S6229-239) (200 microM), which did not act as a substrate for the microsomal S6 phosphatase and did not affect its activity, inhibited the microsomal phosphorylase phosphatase activity by about 50%, and (d) the elution profile of the phosphorylase phosphatase activity was markedly broader than that of the S6 phosphatase activity. A series of in vivo studies showed that streptozotocin-diabetes and insulin replacement therapy as well as ip injection of insulin or vanadate, which modified the microsomal S6 phosphatase activity, had no statistically significant effects on the microsomal phosphorylase phosphatase activity. Taken together, these results suggest that the microsomal S6 phosphatase and phosphorylase phosphatase activities are due to two distinct enzyme populations.  相似文献   

3.
A De Léan 《Life sciences》1986,39(12):1109-1116
The interaction of atrial natriuretic factor (ANF) with the diuretic amiloride was studied in bovine adrenal zona glomerulosa. Amiloride enhances 2 to 3-fold high affinity binding of [125I] ANF to zona glomerulosa membrane receptor with an ED50 of 10 microM. This effect is due to a recruitement of high affinity receptor sites and to an increase of their affinity from a Kd of 23 to 8 pM. This enhancing effect is almost equipotently elicited by guanabenz, while clonidine is 20-fold less potent and arginine is inactive. ATP reduces by 30 to 50% [125I] ANF binding with an IC50 of 50 microM. Amiloride and ATP opposite effects on [125I] ANF binding are mutually competitive. Low concentrations of amiloride (less than 100 microM) potentiate the inhibitory effect of ANF in hormone-stimulated steroid secretion with a 3-fold decrease in ANF IC50 at 10 microM amiloride. Higher concentrations of amiloride (greater than 100 microM) directly inhibit aldosterone secretion with an IC50 of 500 microM and a maximum of 80 to 100% reversal of stimulation by various secretagogues. These results indicate that amiloride synergistically potentiates ANF inhibitory action by altering ANF receptor binding properties. They also suggest a role for sodium transport and for phosphorylation-dephosphorylation mechanisms in the mode of action of ANF.  相似文献   

4.
A primary objective of the present study has been to determine the changes which occur in Rana catesbeiana liver organelle membranes during thyroxine-induced metamorphosis. To this end, enzyme and cytochrome profiles were determined for mitochondria, microsomes, and nuclear membrane fractions isolated from livers of R. catesbeiana tadpoles which had been fasted for 6 days at 15 +/- 0.5 degrees and then immersed in thyroxine, 2.6 X 10(-8) M, for periods of up to 12 days at 23.5 +/- 0.4 degrees. The ratio of total succinate-cytochrome c reductase activity in the initial homogenate fraction to the total activity of this mitochondrial "marker" enzyme recovered in the final mitochondrial fraction remained constant, approximately 0.5, throughout the course of thyroxine treatment; however, after a 3- to 4-day latency the mitochondrial protein mass recovered per unit mass of initial homogenate protein was found to increase significantly (approximately 2-fold by Day 10 of thyroxine treatment). A similar increase was also observed in the yield of microsomal, but not nuclear membrane, protein mass as a function of thyroxine treatment. Prolonged thyroxine treatment (12 days) resulted in approximately 50% decreases in tadpole liver homogenate and microsomal NADH-cytochrome c reductase specific activities; in contrast, mitochondrial and nuclear membrane NADH-cytochrome c reductase specific activities were not altered under the same conditions. In addition, homogenate and microsomal NADPH-cytochrome c reductase specific activities were found to have increased significantly after 12 days of thyroxine treatment; however, the specific activity of NADPH-cytochrome c reductase in the mitochondrial fraction was unchanged. It was also observed that thyroxine treatment resulted in increases in homogenate and microsomal glucose-6-phosphatase specific activities, whereas the mitochondrial as well as nuclear membrane glucose-6-phosphatase specific activities remained unchanged. Furthermore, in contrast to homogenate and mitochondrial monoamine oxidase specific activities, which decreased 30 and 40%, respectively, as a consequence of thyroxine treatment (12 days), the succinate-cytochrome c reductase and oligomycin-sensitive Mg2+ ATPase specific activities determined for these fractions increased significantly. In all instances, changes as a result of thyroxine treatment in membrane-localized homogenate or organelle enzyme specific activities were apparent only after a 3- to 4-day initial latent period. The in vitro effects of thyroxine (10(-10) - 10(-5) M) on the membrane-localized enzyme activities examined in this study were either negligible or, as in the case of mitochondrial succinate-cytochrome c reductase and microsomal NADH-cytochrome c reductase, opposite to the changes observed in response to in vivo thyroxine treatment, with the exception of microsomal NADPH-cytochrome c reductase activity which was enhanced approximately 2-fold by 10(-5) M thyroxine...  相似文献   

5.
Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 microM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity.  相似文献   

6.
We have found specific receptors for atrial natriuretic factor (ANF) in cultured neuroblastoma cells (N4TG1) of peripheral ganglionic origin. Scatchard analysis of the displacement binding revealed noninteracting, single-class binding sites with a KD of 1 X 10(-10) M and a density (Bmax) of 110,000-150,000 sites/cell. The cell-bound 125I-ANF was displaced by unlabeled ANF in a dose-dependent manner. Hormones unrelated to ANF such as angiotensins, adrenocorticotropic hormone, or arginine vasopressin were ineffective in displacing the cell-bound radioactivity. Using azidobenzoyl-125I-ANF as a photoaffinity ligand, an ANF receptor with an apparent Mr of 138,000 was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The addition of unlabeled ANF (1 microM) to the incubation medium completely abolished the labeling of this protein band, but atriopeptin I (1 microM) or angiotensins I, II, and III (each 1 microM) were not effective in inhibiting the affinity labeling. The treatment of the neuroblastoma cells with ANF stimulated intracellular cyclic GMP levels in a dose-dependent manner with an EC50 of 5 nM. ANF (1 X 10(-7) M) stimulated cyclic GMP accumulation in less than 5 min by 30-fold as compared to the controls.  相似文献   

7.
The direct effects of atrial natriuretic factor (ANF) and acetylcholine (ACh) on isolated guinea pig ventricular papillary muscle were studied. ANF (3 x 10(-9) - 3 x 10(-7) M), a cardiogenic hormone, had no significant electrical or mechanical effects on guinea pig papillary muscle driven at a frequency of 60 beats/min in normal (4 mM) and high [K]0 (27 mM) Tyrode solutions. On the other hand, ACh (3 x 10(-8) - 3 x 10(-7) M) caused a significant shortening of action potential duration and the contractile force showed no change or a slight decrease. At high concentration (5 microM), ACh reduced action potential durations at 50% and 90% repolarization (APD50 and APD90) by 10.5 +/- 2.1% and 12.4 +/- 1.8%, respectively, but the contractile force was slightly increased by 9.8 +/- 1.2%. In eleven of twenty-six preparations, spontaneous activity occurred and intermingled with driven activity. The ectopic rhythms were suppressed by ACh (1-5 microM). The changes in electrical but not mechanic activity induced by ACh were suppressed in the presence of five micromolar atropine. These results reveal that, in guinea pig papillary muscle, ANF had no direct chronotropic or inotropic effect. ACh may reduce APD and spontaneous discharges through an activation of muscarinic receptors but enhance twitch tension through other mechanisms.  相似文献   

8.
Cytochrome P450-dependent alkoxyphenoxazone dealkylase activity was measured in alveolar type II cells from control and beta-naphthoflavone (ip) treated-rats. Type II cells were isolated from collagenase/elastase-digested lung tissue and purified by centrifugal elutriation. The specificity of the cytochrome P450-dependent activity towards four alkoxyphenoxazones (methoxy-, ethoxy-, pentoxy-, and benzyloxyphenoxazone) was measured under conditions that minimized interference by cytosolic conjugating- and NADPH-dependent quinone reductase activities. Ethoxyphenoxazone dealkylase activity was induced 17-fold following beta-naphthoflavone treatment and was further characterized by its kinetic parameters and sensitivities toward in vitro inhibitors (Km(app) = 0.20 microM, Vmax = 1.74 pmoles resorufin min-1 (10(6) cells)-1 10(6) cells; I50 (alpha-naphthoflavone) = 0.025 microM, and I50 (metyrapone) = 72 microM). beta-Naphthoflavone pretreatment of the rats did not result in statistically significant changes in methoxy-, pentoxy-, or benzyloxyphenoxazone dealkylase activity of alveolar type II cells, although, a trend towards decrease activity was observed for benzyloxyphenoxazone. beta-Naphthoflavone pretreatment had no effect on oxygen consumption or trypan blue exclusion in alveolar type II cells and macrophage ethoxyphenoxazone dealkylase and benzyloxphenoxazone dealkylase activities were not affected by the beta-naththoflavone pretreatment. The results show that exposure to beta-naphthoflavone resulted in an increase in type II cell cytochrome P450-dependent ethoxyphenoxazone dealkylase activity but not in other alveolar type II cell or macrophage alkoxyphenoxazone dealkylase activities or in parameters that monitor viability and cell wall integrity.  相似文献   

9.
A rapid and sensitive radioimmunoassay has been developed for measurements of atrial natriuretic factor (ANF) in rat plasma. The antiserum, raised to rat ANF (99-126), cross-reacts with rat ANF (103-123), ANF (103-125), ANF (103-126) but not with smaller fragments, human ANF (99-126), angiotensin II, bradykinin or vasopressin. The plasma ANF concentration is 181 +/- 24 pg/ml (N = 24) in the unstressed conscious rats (Charles River CD, male). The ANF immunoreactivity in the plasma extracts was verified by HPLC analysis, which displayed one major immunoreactive peak of ANF corresponding to rat ANF (99-126) and some smaller fragments. Intravenous injection of saline elevated circulating ANF, whereas acute volume depletion by hemorrhage, water deprivation and furosemide diuresis greatly lowered plasma ANF. The prompt response of plasma ANF levels to acute changes in volume status is consistent with the proposed role of ANF as a volume-regulatory hormone.  相似文献   

10.
While atrial natriuretic factor (ANF) does not influence ACTH secretion, it was reported to have a marked stimulatory effect on the intracellular accumulation of cGMP in rat anterior pituitary cells in culture. Since many biological actions of ANF appear coupled to its excitatory action on target cell guanylate cyclase, the current study was designed to characterize the ANF-induced cGMP response in anterior pituitary with a view to determining whether the nucleotide plays a regulatory role in the secretory function of this gland. A 3 min exposure of cells in primary culture to 300 nM ANF (99-126) or 100 microM sodium nitroprusside (SNP), a stimulator of guanylate cyclase, causes maximal 10- and 3-fold elevations of cGMP levels, respectively. Following a progressive decrease, 6- and 2-fold increases over basal cGMP levels are still observed after 180 min of incubation with ANF (99-126) and SNP, respectively. The half-maximal stimulation of cGMP accumulation induced by a 10 min exposure to ANF (99-126), or rat atriopeptin II (ANF 103-125) is observed at 9 +/- 2 and 125 +/- 22 nM, respectively. ANF fragments (99-109) and (111-126), as well as human cardiodilatin (hANF 1-16), do not alter cGMP levels. Basal and ANF-induced cGMP levels are at least 10-fold higher in cell populations enriched in gonadotrophs compared to gonadotroph-impoverished preparations. A 3 h incubation of cells with ANF (0.1-1000 nM), however, fails to modify spontaneous or LHRH-induced LH secretion. Similarly, ANF does not alter spontaneous release of GH, TSH or PRL. The data suggest indirectly that gonadotrophs represent a principal site at which ANF acts to stimulate cGMP synthesis, but that the nucleotide is not a specific regulator of the LH secretory process; nor is it generally involved as a second messenger in the secretory function of any cell type of the anterior pituitary gland.  相似文献   

11.
Elevation of either cAMP or cGMP causes smooth muscle relaxation. Whether these effects are mediated through cAMP-dependent protein kinase (cAK), cGMP-dependent protein kinase (cGK), or both is unknown. Pig coronary arteries were treated with sodium nitroprusside (SNP) or atrial natriuretic factor (ANF), relaxants which elevate cGMP, and with isoproterenol or forskolin, relaxants which elevate cAMP. Incubation of the arteries with 10 microM SNP produced a 3.3-fold increase in cGMP without altering cAMP; the cGK activity ratio (-cGMP/+cGMP) in these extracts was increased by 2.6-fold as determined by a newly developed assay, while the cAK activity ratio (-cAMP/+cAMP) was unchanged. The increase in cGK activity ratio by SNP was concentration-dependent and was nearly maximal at 30 s. Treatment of the tissue with 10 nM ANF also increased the cGK activity ratio (2.3-fold), but not that of cAK. 100 microM isoproterenol caused a 2.9-fold elevation of cAMP with no change in cGMP, but both cAK and cGK activity ratios were increased (2.3- and 1.6-fold, respectively). The increase in the cGK activity ratio could be mimicked by cAMP addition to control tissue extracts at the concentration measured in extracts of the isoproterenol-treated tissue. Forskolin (1 and 10 microM) also increased the cGK activity ratio (1.9- and 4.9-fold). The increases in cGK activity observed in extracts suggest that moderate elevation of either cGMP or cAMP causes intracellular cGK activation, thus producing relaxation of vascular smooth muscle.  相似文献   

12.
Previous studies in our laboratory had demonstrated that addition of alpha-naphthoflavone (ANF) to lymphocytes from smokers or polychlorinated biphenyls (PCB)s-exposed individuals caused an increase in sister chromatid exchange (SCE) frequency whereas lymphocytes from controls were relatively unaffected. In order to investigate the mechanism responsible, metabolism of ANF by uninduced and 2,3,7,8-tetrachlorodibenzodioxin (TCDD)-induced microsomes was studied as a function of microsomal protein concentration and incubation time. Nonpolar metabolites were analyzed and the amount of conjugated (polar) and protein-bound metabolites determined. The initial ANF-metabolism rate was 10-fold higher in TCDD-induced microsomes (4.9 +/- 0.6 nmol/min per mg TCDD-induced microsomal protein vs. 0.5 +/- 0.2 nmol/min per mg uninduced microsomal protein) than in uninduced microsomes. Moreover, uninduced microsomes no longer metabolize ANF after 30-40 min while TCDD-induced microsomes metabolize ANF for longer than 2 h or until all the ANF is gone. In addition to the metabolites formed by uninduced microsomes [7,8-dihydro-7,8-dihydroxy-ANF (7,8-dihydrodiol); 5,6-dihydro-5,6-dihydroxy-ANF (5,6-dihydrodiol); 5,6-oxide-ANF and 6-hydroxy-ANF], TCDD-induced microsomes from unidentified metabolites. When TCDD-induced microsomes and 40 microM ANF were added to Chinese hamster ovary (CHO) cells, we found a correlation between the concentration of 5,6-oxide-ANF and clastogenicity to CHO cells. However, purified 5,6-oxide-ANF did not induce SCEs in CHO cells in the absence or presence of TCDD-induced microsomes. However, a minor metabolite (identified as the 9,10-dihydro-9,10-dihydroxy-ANF by acid dehydration) formed with TCDD-induced microsomes produces clastogenicity in CHO cells. These data indicate that a minor metabolite of ANF is a potent clastogen which suggests that this metabolite may be responsible for the ANF-mediated increases in SCE frequency in lymphocytes from smokers or PCB-exposed individuals.  相似文献   

13.
Two aminopeptidases (I and II), hydrolysing basic termini, were purified to homogeneity (as judged by polyacrylamide gel electrophoresis) from human quadriceps muscle by anion-exchange chromatography and preparative electrophoresis. The electrophoretic migration rate of II was approximately 80% of that of I. Both enzymes had the following properties: optimum activity was at pH 6.5; addition of 0.15 M Cl- or Br- anions resulted in a 20-fold or 10-fold increase in activity respectively. There was little or no increase in activity on the addition of other anions, or divalent cations (0.05-5mM). Approximately 50% inhibition of activity was obtained in the presence of bestatin (0.1 microM), rho-hydroxymercuriphenylsulphonic acid (0.1 microM), EDTA (10 mM), 1,10-phenanthroline (100 microM), N-ethylmaleimide (1 mM) and But-Thr-Phe-Pro (0.5 mM). The molecular mass was 72 000 Da (gel filtration). Only the arginyl and lysyl 7-amino-4-methylcoumarin (Amc) derivatives were appreciably hydrolysed; approximate Km values for the reaction of I and II with these substrates (10-250 microM) were estimated as follows: Arg-Amc, KmI = 70 microM, KmII = 270 microM; Lys-Amc KmI = 280 microM, KmII = 400 microM. Both enzymes hydrolysed dipeptides with Arg or Lys as the NH2-terminal amino acid, however this was not an absolute requirement for dipeptide hydrolysis. The action of I and II on physiologically active oligopeptides was very restricted, with only bradykinin, proangiotensin and neurotensin being appreciably degraded. The breakdown of these peptides did not occur by classical aminopeptidase action (i.e. hydrolysis of the NH2-terminal residues), but via cleavage of internal peptide bonds. These results suggest that I and II may be isoenzymes of a Cl- -requiring, thiol-type aminopeptidase, which hydrolyses basic termini. These enzymes may act primarily as dipeptidases, with a very restricted mode of action in the degradation of naturally occurring oligopeptides.  相似文献   

14.
Because the onset of triacylglycerol-rich lipoprotein synthesis occurs in guinea pig liver during fetal life, we investigated the microsomal enzyme activities of triacylglycerol synthesis in fetal and postnatal guinea pig liver. Hepatic monoacylglycerol acyltransferase specific and total microsomal activities peaked by the 50th day of gestation and declined rapidly after birth to levels that were virtually unmeasurable in the adult. Peak fetal specific activity was more than 75-fold higher than observed in the adult. The specific activities of fatty acid CoA ligase and lysophosphatidic acid acyltransferase increased 2- to 3-fold before birth; lysophosphatidic acid acyltransferase increased a further 2.6-fold during the first week of life. Specific activities of phosphatidic acid phosphatase, microsomal glycerophosphate acyltransferase, and diacylglycerol acyltransferase varied minimally over the time course investigated. These data demonstrate that selective changes occur in guinea pig hepatic microsomal activities of triacylglycerol synthesis before birth. Because of an approximate 11-fold increase in hepatic microsomal protein between birth and the adult, however, major increases in total microsomal activity of all the triacylglycerol synthetic activities occurred after birth. The pattern of monoacylglycerol acyltransferase specific and total microsomal activities differs from that of the rat in occurring primarily during the last third of gestation instead of during the suckling period. This pattern provides evidence that hepatic monoacylglycerol acyltransferase activity probably does not function to acylate 2-monoacylglycerols derived from partial hydrolysis of diet-derived triacylglycerol.  相似文献   

15.
Two closely related Cl(-)-activated arginyl aminopeptidases (I and II) were purified from a soluble extract of postmortem human cerebral cortex by anion-exchange chromatography and preparative gel electrophoresis. The electrophoretic mobility of II was approximately 80% that of I; the molecular mass of both enzymes was approximately 70 kilodaltons (kDa) (gel filtration). The aminopeptidase action of I and II on aminoacyl-7-amido-4-methylcoumarin (AMC) substrates was restricted to the Arg and Lys derivatives. Both enzymes had significant endopeptidase activity, hydrolysing several biologically active peptides including neurotensin, bradykinin, angiotensin-I, substance P, luliberin, and somatostatin at internal bonds. Other peptides [Leu-enkephalin, proctolin, thyroliberin, adrenocorticotropin18-39 (ACTH18-39), ACTH11-24, and dynorphin (1-13)] were not appreciably hydrolysed. The amino- and endopeptidase activities had pH optima at 6.5 and 7, respectively, and were both inhibited by metal ion chelators and sulphydryl group blocking agents. The aminopeptidase activity was stimulated 20-fold by Cl- ions, whereas the endopeptidase activity was unaffected by the latter. Km values for neurotensin degradation were 20 microM (I) and 37 microM (II) and for Arg-AMC hydrolysis they were 167 microM (I) and 125 microM (II). The endopeptidase activity was not inhibited by the aminopeptidase inhibitors arphamenine or bestatin (IC50 = 9 nM and 0.1 microM, respectively, with Arg-AMC substrate).  相似文献   

16.
Because systems controlled by basal NAD(P)H oxidase activity appear to contribute to differences in responses of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to hypoxia, we characterized the Nox oxidases activities present in these vascular segments and how cytosolic NAD(P)H redox systems could be controlling oxidase activity. BPA generated approximately 60-80% more lucigenin (5 microM) chemiluminescence detectable superoxide than BCA. Apocynin (10 microM), a NAD(P)H oxidase inhibitor, and 6-aminonicotinamide (1 mM), a pentose phosphate inhibitor (PPP), both attenuated (approximately by 50-70%) superoxide detected in BPA and BCA. There was no significant difference in the expression of Nox2 or Nox4 mRNA or protein detected by Western blot analysis. NADPH and NADH increased superoxide in homogenates and isolated microsomal membrane fractions in a manner consistent with BPA and BCA having similar levels of oxidase activity. BPA had 4.2-fold higher levels of NADPH than BCA. The activity and protein levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting PPP enzyme generating cytosolic NADPH, were 1.5-fold higher in BPA than BCA. Thus BPA differ from BCA in that they have higher levels of G6PD activity, NADPH, and superoxide. Because both arteries have similar levels of Nox expression and activity, elevated levels of cytosolic NADPH may contribute to increased superoxide in BPA.  相似文献   

17.
Inhibition studies on rat liver microsomal glutathione transferase   总被引:2,自引:0,他引:2  
A set of inhibitors for rat liver microsomal glutathione transferase have been characterized. These inhibitors (rose bengal, tributyltin acetate, S-hexylglutathione, indomethacin, cibacron blue and bromosulphophtalein) all have I50 values in the 1-100 microM range. Their effects on the unactivated enzyme were compared to those on the N-ethylmaleimide- and trypsin-activated microsomal glutathione transferase. It was found that the I50 values were decreased upon activation of the enzyme (5-20-fold), except for S-hexylglutathione, where a slight increase was noted. Thus, the activated microsomal glutathione transferase is generally more sensitive to the effect of inhibitors than the unactivated enzyme. It was also noted that inhibitor potency can vary dramatically depending on the substrate used. The I50 values for the N-ethylmaleimide- and trypsin-activated enzyme preparations are altered in a similar fashion compared to the unactivated enzyme. This finding indicates that these two alternative mechanisms of activation induce a similar type of change in the microsomal glutathione transferase.  相似文献   

18.
Lipase (triacylglycerol lipase, EC 3.1.1.3) activities have been reported previously in the lipid body and microsomal membranes of oilseed-rape (Brassica napus cv. Andor) seedlings, but conflicting data made it unclear whether there was one lipase in the lipid bodies, with the microsomal activity being attributable to fragments of lipid-body membrane, or if there were two separate lipase activities. In the present study, simultaneous characterization of the lipases under identical conditions showed they differed substantially in their pH-activity curves, kinetics and substrate specificities. (1) The kinetics of the microsomal lipase showed that the rate of lipolysis reached a plateau at concentrations above 5 mM, whereas the lipid-body lipase showed a linear increase in activity with substrate concentration up to 20 mM. (2) The pH optimum of the microsomal lipase was 7.5, whereas that of the lipid-body lipase was 9.0. The microsomal lipase was greatly inhibited at higher pH values, whereas the lipid-body lipase was much less affected. (3) Activity of the microsomal lipase was greatly diminished when substrates with longer chain length were used, and enhanced 4-fold if the substrates contained a single double bond. The lipid-body lipase was relatively unaffected by the type of fatty acid in the triacylglycerol. (4) SDS/polyacrylamide-gel electrophoresis showed little or no cross-contamination of the lipid-body and microsomal fractions. (5) The microsomal lipase activity comprised 75-80% of the total extracted.  相似文献   

19.
Inhibitory effects of flavonoid phytochemicals, flavones, flavonols and isoflavones on cortisol production were examined in human adrenal H295R cells stimulated with di-buthylyl cAMP. In addition, the inhibitory effects of these chemicals on the activity of P450scc, 3beta-HSD type II (3beta-HSD II), P450c17, P450c21 and P45011beta, steroidogenic enzymes involved in cortisol biosynthesis, were examined in the same cells. Exposure to 12.5 microM of the flavonoids 6-hydroxyflavone, 4'-hydroxyflavone, apigenin, daidzein, genistein and formononetin significantly decreased cortisol production (by 6.3, 69.6, 47.5, 26.6, 13.8 and 11.3%, respectively), and biochanin A significantly decreased cortisol production (by 47.3%) at a concentration of 25 microM without any significant cytotoxic effects or changes in cell number. Daidzin, the 7-glucoside of daidzein, did not alter cortisol production by H295R cells at concentrations over 10 microg/ml (24 microM). Daidzein-induced reduction of cortisol production by H295R cells was not inhibited by the estrogen receptor antagonist ICI 182,780. The flavonoids 6-hydroxyflavone, daidzein, genistein, biochanin A and formononetin strongly and significantly inhibited microsomal 3beta-HSD II activity at concentrations from 1 to 25 microM, and I(50) values were estimated to be 1.3, 2, 1, 0.5 and 2.7 microM, respectively. In addition, these flavonoids significantly inhibited microsomal P450c21 activity at 12.5 and/or 25 microM. In addition, 6-hydroxyflavone inhibited activity of microsomal P450c17 and mitochondrial P45011beta at 12.5 and/or 25 microM. Results of Lineweaver-Burk's plot analysis indicate that daidzein is a competitive inhibitor of the activity of 3beta-HSD II and P450c21. K(m) and V(max) values of 3beta-HSD II for DHEA were estimated to be 6.6 microM and 328pmol/minmg protein, respectively. K(m) and V(max) values of P450c21 for progesterone were estimated to be 2.8 microM and 16pmol/minmg protein, respectively. K(i) values of 3beta-HSD II and P450c21 for daidzein were estimated to be 2.9 and 33.3 microM, respectively.  相似文献   

20.
Phynoptin (Ph) and cyclophosphamide (CP) gave rise to a type I spectral changes with liver microsomal fraction. KS were 15 microM and 2150 microM, respectively. Ph increases the concentration of NBP product(s) of CP and acrolein in the blood plasma of animals. Ph increases a toxicity of CP. LD50 was 388.0 +/- 13.9 mg/kg for CP and LD50 was 342.8 +/- 16.9 mg/kg for CP in combination with Ph. Ph changes a therapeutic action of CP in mice with hemocytoblastosis La. Pharmacokinetic interactions have been demonstrated between calcium antagonists Ph and CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号