首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clp1 proteins are essential components of the eukaryal mRNA 3′ cleavage-polyadenylation machinery. Human Clp1 has an additional function as an RNA-specific 5′-OH polynucleotide kinase, which is implicated in RNA end healing. Yeast Clp1 has no kinase activity, although it binds ATP. Here we report that Clp1-like proteins are extant in archaea. Purification and characterization of Pyrococcus horikoshii Clp1 (PhoClp1) reveals it to be a thermostable 5′-OH polynucleotide kinase optimally active at 55°C to 85°C. PhoClp1 catalyzes transfer of the gamma phosphate from ATP (K m 16 μM) to either 5′-OH RNA or DNA ends, although it prefers RNA in a competitive situation. Increasing the monovalent salt concentration to 250 mM suppresses the DNA kinase without affecting RNA phosphorylation, suggesting that RNA is a likely substrate for this enzyme in vivo. Indeed, we show that expression of PhoClp1 in budding yeast can complement a lethal mutation in the 5′-OH RNA kinase module of tRNA ligase. PhoClp1 is a member of the P-loop phosphotransferase superfamily. Alanine mutations at the P-loop lysine (Lys49) and a conserved aspartate (Asp73) inactivate the kinase. Our studies fortify emerging evidence for an enzymatic RNA repair capacity in archaea and provide a new reagent for polynucleotide phosphorylation at high temperatures.  相似文献   

2.
Fructose induces depletion of adenine nucleotides in liver and also strongly inhibits incorporation of radioactive amino acids into protein (Mäenpää, P.H., Raivio, K.O. and Kekomäki, M.P. (1968) Science 161, 1253–1254). In this study we have investigated the effects of fructose on aminoacylation of tRNA and on free amino acids in rat liver. 30 min after d-fructose (30 mmol/kg) was injected intraperitoneally into rats, liver ATP was reduced by 58%, ADP by 42%, AMP by 13%, the ATP/ADP ratio by 30%, and total adenine nucleotides by 48%. Using gas chromatography, the aminoacylation of tRNA was determined by quantifying the endogenous amino acids attached to tRNA in vivo. Aminoacylation was reduced by 31%. With different amino acids, reduction varied from 4% (asparagine plus aspartic acid) to 58% (arginine). On the other hand, the amount of free amino acids in the liver was increased by 24%. The most marked individual change was in alanine, which increased 5.7-times. This may have resulted from a combination of effects involving an increased production of alanine in muscle and liver and decreased hepatic gluconeogenesis from alanine caused by the ATP depletion.  相似文献   

3.
Active bovine selenophosphate synthetase 2, not having selenocysteine   总被引:1,自引:0,他引:1  
During the course of studying selenocysteine (Sec) synthesis mechanisms in mammals, we prepared selenophosphate synthetase (SPS) from bovine liver by 4-step chromatography. In the last step of chromatography of hydroxyapatite, we found a protein band of molecular mass 33 kDa on SDS-PAGE, consistent with the pattern of SPS activity that was indirectly manifested by [75Se]Sec production activity; however, we could not detect significant Se content in this active fraction. We also found a clear band of 33 kDa by Western blotting with antibody against a common peptide (387-401) in SPS2. We detected selenophosphate as the product of this active enzyme in the reaction mixture, composed of ATP, [75Se]H2Se and SPS. Chemically synthesized selenophosphate plays a role in Sec synthesis, not the addition of this enzyme. These results support that the product of SPS2 is selenophosphate itself. During this investigation, the probable sequence of bovine SPS2 not having Sec was reported in the blast information and the molecular mass was near with the protein in this report. Thus, bovine active SPS2 of molecular mass 33 kDa does not contain Sec. K. Furumiya and K. Kanaya contributed equally to this work.  相似文献   

4.
Abstract: Synaptic vesicles isolated from electric ray electric organ have been shown previously to contain a 34-kDa protein that binds azido-ATP, azido-AMP, and N -ethylmaleimide. The protein was found to share similarities with the mitochondrial ADP/ATP carrier and assumed to represent the synaptic vesicle nucleotide transporter. Synaptic vesicles were purified by sucrose density gradient centrifugation and subsequent chromatography on Sephacryl S-1000 from both Torpedo electric organ and bovine brain cerebral cortex. They contained ATP-binding proteins of 35 kDa and 34 kDa, respectively. ATP binding was inhibited by AMP. Both proteins were highly enriched after column chromatography of vesicle proteins of AMP-Sepharose. Antibodies were obtained against both proteins. Antibodies against the bovine brain synaptic vesicle protein of 34 kDa bound specifically to the 35-kDa protein of Torpedo vesicles. An N-terminal sequence obtained against the 34-kDa protein of bovine brain synaptic vesicles identified it as glyceraldehyde-3-phosphate dehydrogenase. The previously observed molecular characteristics of the putative vesicular nucleotide transporter in Torpedo fit those of glyceraldehyde-3-phosphate dehydrogenase. We, therefore, suggest that the protein previously identified as putative nucleotide transporter is, in fact, glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

5.
利用T7RNA聚合酶/启动子表达系统在大肠杆菌JM109(DE3)中表达化学合成的大鼠肝tRNAⅡe基因.经酚抽提、DEAE-52离子交换柱层析及HPLC层析,分离纯化大鼠肝tRNAⅡe.变性聚丙烯酰胺凝胶电泳和Northern-blot鉴定表明,大鼠肝tRNAⅡe基因成功地获得表达.氨酸化活性检测表明:纯化后,每1A260单位(40μg)的tRNAⅡe可负载约650pmol的Ⅱe,纯度为54.2%.说明从大肠杆菌中分离纯化出具有一定生物学活性,一定纯度的合成基因表达产物.  相似文献   

6.
We measured the amount of Se in bovine liver tRNA. tRNA was chromatographed on a BD-cellulose column and Se-rich tRNA was eluted from the column in front of a main tRNA peak. There was 0.3 mmol Se/mol of tRNA and this level is about one tenth that of Escherichia coli tRNA. This suggests the presence of an enzyme that modifies tRNA with Se in bovine liver. We isolated the activity of this enzyme (selenouridine synthase) by chromatography of bovine liver extracts on a DEAE-cellulose column. ATP and selenophosphate synthetase, as well as selenouridine synthase and tRNA, were necessary for the reaction. 75Se was used to label the reaction products, which were analyzed by TLC after digestion with ribonuclease T2. The position of the 75 Se-nucleotide on a TLC plate was identical to that of the Se-nucleotide, 5-methylaminomethyl-2-seleno-Up, prepared from 75Se-tRNA in E. coli.  相似文献   

7.
The aminoacylation of rat liver tRNA with selenocysteine was studied in tissue slices and in a cell-free system with [75Se]selenocysteine and [75Se]selenite as substrates. [75Se]Selenocysteyl tRNA was isolated via phenol extraction, 1 M NaCl extraction and chromatography on DEAE-cellulose. [75Se]Selenocysteyl tRNA was purified on columns of DEAE-Sephacel, benzoylated DEAE-cellulose and Sepharose 4B. In a dual-label aminoacylation with [35S]cysteme, the most highly purified 75Se-fractions were > 100-fold purified relative to 35S. These fractions contained < 0.7% of the [35S]cysteine originally present in the total tRNA. When [35Se]selenocysteyl tRNA was purified from a mixture of 14C-labeled amino acids, over 97% of the [14C]aminoacyl tRNA was removed. The [75Se]selenocysteine was associated with the tRNA via an aminoacyl linkage. Criteria used for identification included alkaline hydrolysis and recovery of [75Se]selenocysteine, reaction with hydroxylamine and recovery of [75Se]selenocysteyl hydroxamic acid and release of 75Se by ribonuclease. The specificity of [75Se]selenocysteine aminoacylation was demonstrated by resistance to competition by a 125-fold molar excess of either unlabeled cysteine or a mixture of the other 19 amino acids in the cell-free selenocysteine aminoacylation system.  相似文献   

8.
Hexokinase was partially purified from the leaves of Dendrophthoe falcata. The optimum pH for the enzyme was 8.5. The enzyme was sensitive to p-CMB and the inhibition could be reversed by 2-mercaptoethanol. The optimum temperature was 40° and energy of activation 6900 cal/mol. The enzyme had an absolute requirement for a divalent metal ion. Although Mg2+ was the preferred metal, it could be partially replaced by Mn2+ and Ca2+. ATP was the most effective phosphoryl donor. Glucose was the best substrate, the Km values of 0.14 and 0.26 mM were obtained at saturated and sub-saturated ATP concentration. Phosphorylation coefficients show the following order of reactivity of sugars: glucose mannose 2-deoxy D-glucose fructose glucosamine galactose ribose. The Km value for ATP was 0.16 mM, which increased to 0.35 mM in the presence of 0.5 mM ADP. ADP and 5′-AMP were competitive inhibitors with respect to ATP, and Ki values were 0.4 and 1.2 mM respectively.  相似文献   

9.
A high molecular weight (HMW) fraction of the 150,000 g supernatant of rat brain homogenates contains protein-tRNA complexes which are able to incorporate [3H]Arg and [3H]Lys into tRNA. The aminoacylation of tRNA(Arg) was found to be dependent on ATP and inhibited by RNase. Conversely, the aminoacylation of tRNA(Lys) did not require exogenous ATP and was resistant to RNase and ATPase. In HMW fractions of regenerating rat sciatic nerves, the charging of both tRNA(Arg) and tRNA(Lys) was resistant to RNase and ATPase and did not require exogenous ATP. Because sciatic nerves are rich in axoplasm and tRNAs are known to be present in axons, we tested the hypothesis that degradative enzyme-resistant, ATP-tRNA complexes were of axonal origin. In HMW fractions from rat liver (containing no axons), both tRNA(Arg) and tRNA(Lys) were sensitive to RNase and required exogenous ATP for charging. But, in similar fractions of axoplasm obtained from the giant axon of squid, both tRNAs were insensitive to RNase and ATPase and did not require exogenous ATP for charging. These results suggest that tRNAs in axons are present in protected HMW complexes and contain endogenous stores of ATP. The presence of ATP in the HMW complexes was demonstrated by the luciferase-luciferin assay for ATP. The nature of the protection of tRNAs from RNases was examined by dissociating proteins from HMW complexes by boiling, treating with proteinase K, or overhomogenizing the tissue. These procedures failed to render brain tRNA(Lys) susceptible to RNase. But phenol-extracted, ethanol-precipitated brain tRNA(Lys) was sensitive to RNase, suggesting that the protection of tRNA(Lys) may be by a protease- and heat-resistant polypeptide or by a nonproteinaceous mechanism.  相似文献   

10.
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5′-kinase, a central 2′,3′ phosphatase, and a C-terminal ligase. Here we report the crystal structure of the kinase domain of Clostridium thermocellum Pnkp bound to ATP•Mg2+ (substrate complex) and ADP•Mg2+ (product complex). The protein consists of a core P-loop phosphotransferase fold embellished by a distinctive homodimerization module composed of secondary structure elements derived from the N and C termini of the kinase domain. ATP is bound within a crescent-shaped groove formed by the P-loop (15GSSGSGKST23) and an overlying helix-loop-helix “lid.” The α and β phosphates are engaged by a network of hydrogen bonds from Thr23 and the P-loop main-chain amides; the γ phosphate is anchored by the lid residues Arg120 and Arg123. The P-loop lysine (Lys21) and the catalytic Mg2+ bridge the ATP β and γ phosphates. The P-loop serine (Ser22) is the sole enzymic constituent of the octahedral metal coordination complex. Structure-guided mutational analysis underscored the essential contributions of Lys21 and Ser22 in the ATP donor site and Asp38 and Arg41 in the phosphoacceptor site. Our studies suggest a catalytic mechanism whereby Asp38 (as general base) activates the polynucleotide 5′-OH for its nucleophilic attack on the γ phosphorus and Lys21 and Mg2+ stabilize the transition state.  相似文献   

11.
A rapidly sedimenting DNA-protein complex was isolated from nuclear lysates in 2 M NaCl and characterized with regard to its polypeptide composition and the DNA-binding properties of the purified proteins. The complex consists of the nuclear matrix with attached DNA. Electrophoresis in SDS-polyacrylamide gels revealed two major and five minor polypeptide bands, mainly in the 60 to 75 kDa molecular weight region. The DNA-matrix complex dissociated into free DNA and proteins in the presence of 2 M NaCl and 5 M urea. The proteins could be purified by chromatography on hydroxyapatite and showed a strong tendency to reassociate at 0.15 M NaCl concentration in the absence of urea. DNA was bound to the reassociated proteins at 0.15 M NaCl concentration. Part of the DNA-protein complex was stable at 1 M NaCl concentration. The binding appeared to be random with regard to the DNA sequence.  相似文献   

12.
The effect of the alkaloid sparteine on arginyl-tRNA formation was studied. It was demonstrated that sparteine sulfate in the concentration range 10–60 mM inhibits the charging reaction when amino acid, ATP and tRNA are used as variable substrates. The mode of action is different for all substrates studied. It was concluded that at high sparteine concentration the pattern of inhibition for all varied substrates is generally uncompetitive. A non-competitive mechanism for amino acid and tRNA was observed at low sparteine concentration, but in the case of ATP it is also uncompetitive.  相似文献   

13.
14.
Selenium-containing tRNA was discovered in germinating barley for the first time with the 75Se isotopic tracer technique; therefore, this technique was used to study the effect of different concentrations of selenium and sulfur in the medium on the content of selenium-containing tRNA in germinating barley. Se-containing tRNAs and its hydrolysates were isolated, purified, and characterized by means of column chromatography, ion-exchange chromatography, high-performance liquid chromatography, and the ultraviolet-visible spectrum. The results show that the amount of selenium in tRNA is almost unaffected by the sulfuric content in the medium, and the pathway for selenium and sulfur to enter tRNA might not be exactly the same. Selenium exists within tRNA in the form of 5-methylamine methyl-2-selenouridine, just as it does within a microorganism tRNA.  相似文献   

15.
The crystal structures of threonyl-tRNA synthetase (ThrRS) from Staphylococcus aureus, with ATP and an analogue of threonyl adenylate, are described. Together with the previously determined structures of Escherichia coli ThrRS with different substrates, they allow a comprehensive analysis of the effect of binding of all the substrates: threonine, ATP and tRNA. The tRNA, by inserting its acceptor arm between the N-terminal domain and the catalytic domain, causes a large rotation of the former. Within the catalytic domain, four regions surrounding the active site display significant conformational changes upon binding of the different substrates. The binding of threonine induces the movement of as much as 50 consecutive amino acid residues. The binding of ATP triggers a displacement, as large as 8A at some C(alpha) positions, of a strand-loop-strand region of the core beta-sheet. Two other regions move in a cooperative way upon binding of threonine or ATP: the motif 2 loop, which plays an essential role in the first step of the aminoacylation reaction, and the ordering loop, which closes on the active site cavity when the substrates are in place. The tRNA interacts with all four mobile regions, several residues initially bound to threonine or ATP switching to a position in which they can contact the tRNA. Three such conformational switches could be identified, each of them in a different mobile region. The structural analysis suggests that, while the small substrates can bind in any order, they must be in place before productive tRNA binding can occur.  相似文献   

16.
17.
Blastocyst formation is associated with a marked increase in ATP production, much of which is thought to be associated with the active transport of ions across the trophectoderm mediated by the sodium pump (Na+, K+, ATPase) resulting in the vectorial transport of water into the blastocoel. In this study, the biochemical activity of the sodium pump was measured directly in single human and bovine embryo extracts by monitoring the conversion of ATP to ADP in the presence and absence of ouabain. ATP and ADP were assayed by HPLC. In both species, there was a transient, significant increase in sodium pump activity while the blastocyst was actively expanding. The oxygen consumption of single human blastocysts was measured in order to estimate the proportion of total ATP used by the Na+, K+, ATPase. The results suggest that approximately 60 and 36% of the ATP produced is used by the sodium pump during blastocoel expansion in the human and bovine blastocyst, respectively.  相似文献   

18.
Pig brain tRNA was assayed for the presence of queuosine in the first position of the anticodon for each of the Q-family of tRNAs (aspartyl, asparaginyl, histidyl and tyrosyl). The brain tRNA was aminoacylated with each of the four amino acids and the aminoacylated tRNA's analyzed by RPC-5 chromatography. The results of this study show that for all four tRNAs of the family, queuine is substituted for guanine in virtually 100% of the anticodons. Therefore, it can be concluded that queuine is able to cross the blood-brain barrier and that brain contains quanine-queuine tRNA transglycosylase, the enzyme responsible for the excision of guanine from the orginal transcipts of these tRNAs and insertion of queuine. The determination of whether the tRNA contained queuine was made from the elution profile of the RPC-5 chromatrograms and the results confirmed by a change in the RPC-5 elution profile when the tRNAs were reacted with BrCN or NaIO4.  相似文献   

19.
大鼠肝RNasin与溴化氰活化的Sepharose 4B反应制备了固相大鼠肝RNasin。用固相大鼠肝RNasin亲和层析大鼠肝中性RNase,可以将其分为两部分。固相大鼠肝RNasin可以亲和层析牛胰RNase的结果说明,牛胰和大鼠肝RNase在二级和三级结构上都非常相似。这为大鼠肝RNase来源于胰脏的观点提供了一个新证据。固相RNasin可以亲和吸附大肠杆菌RNase说明原核细胞RNase与真核细胞RNase在分子起源方面有一定的亲缘关系。固相RNasin柱层析为纯化RNase提供了一个简便的新方法。  相似文献   

20.
One of the Ser-tRNAs, Ser-tRNASec, is converted to Sec-tRNASec by Sec synthase. This Ser-tRNASec is also converted to phosphoser-tRNASec by tRNA kinase. In this study, we analyzed of the products of phosphorylation with tRNA kinase. [3H]Ser-tRNASec purified on Sephacryl S-200 was phosphorylated with [-32P]ATP by tRNA kinase. The product [32P][3H]phosphoser-tRNA was purified on Sephacryl S-200 and hydrolyzed with ribonuclease T2. The chromatogram of this hydrolyzate on DEAE-cellulose in 7M urea buffer showed four peaks. The first peak of the pass-through fraction was seryl-adenosine liberated from the 3-terminal of the tRNA. The second peak, eluted before the third peak containing inorganic phosphate, was phosphoseryl-adenosine. The major compound in the fourth peak was pGp. As a control experiment, non-acylated tRNASec was used as a substrate of phosphorylation and the product was analyzed. The chromatogram of the digest with ribonuclease T2 showed no peak of phosphoseryl-adenosine, but a peak of pGp was seen with the peak of inorganic phosphate. Thus, the major product in the presence of tRNA kinase was pGp, and a small but significant proportion of the radioactivity was found as phosphoserine in the presence of seryl residue on the 3-CCA terminal of tRNASec. These results indicated that tRNA kinase phosphorylates not only Ser-tRNA to phosphoser-tRNA but also Gp of the 5-termini of tRNA to pGp. This study gives a new role to mammalian tRNA kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号