首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-Xylulose and L-xylulose were produced biologically by the oxidation of a corresponding pentitol. A Klebsiella pneumoniae mutant was constructed for the oxidation of D-arabitol to D-xylulose. This mutant constitutively synthesized the D-arabitol permease system and D-arabitol dehydrogenase but was unable to produce the D-xylulokinase of the D-arabitol pathway or the D-xylose isomerase and D-xylulokinase of the D-xylose pathway. An Erwinia uredovora mutant which constitutively synthesized a novel xylitol-4-dehydrogenase but could not synthesize L-xylulokinase was used for the oxidation of xylitol to L-xylulose. Washed cell suspensions of either mutant incubated with 0.5% pentitol would oxidize 60 to 65% of the pentitol to the corresponding ketopentose in 18 h and excrete the ketopentose into the medium. Ketopentoses were rapidly purified from the remaining pentitol by hydroxyl affinity chromatography.  相似文献   

2.
Of the four pentitols ribitol, xylitol, D-arabitol, and L-arabitol, Erwinia uredovora was able to utilize only D-arabitol as a carbon and energy source. Although attempts to isolate ribitol- or L-arabitol-utilizing mutants were unsuccessful, mutants able to grow on xylitol were isolated at a frequency of 9 X 10(-8). Xylitol-positive mutants constitutively synthesized both a novel NAD-dependent xylitol-4-dehydrogenase, which oxidized xylitol to L-xylulose, and an L-xylulokinase. The xylitol dehydrogenase had a Km for xylitol of 48 mM and showed best activity with xylitol and D-threitol as substrates. However, D-threitol was not a growth substrate for E. uredovora, and its presence did not induce either dehydrogenase or kinase activity. Attempts to determine the origin of the xylitol catabolic enzymes were unsuccessful; neither enzyme was induced on any growth substrate or in the presence of any polyol tested. Analysis of xylitol-negative mutants isolated after Tn5 mutagenesis suggested that the xylitol dehydrogenase and the L-xylulokinase structural genes were components of two separate operons but were under common regulatory control.  相似文献   

3.
Nitrogenase of Klebsiella pneumoniae nifV mutants.   总被引:5,自引:2,他引:5       下载免费PDF全文
The MoFe protein of nitrogenase from Klebsiella pneumoniae nifV mutants, NifV- Kp1 protein, in combination with the Fe protein from wild-type cells, catalysed CO-sensitive H2 evolution, in contrast with the CO-insensitive reaction catalysed by the wild-type enzyme. The decrease in H2 production was accompanied by a stoicheiometric decrease in dithionite (reductant) utilization, implying that CO was not reduced. However, CO did not affect the rate of phosphate release from ATP. Therefore the ATP/2e ratio increased, indicating futile cycling of electrons between the Fe protein and the MoFe protein. The inhibition of H2 evolution by CO was partial; it increased from 40% at pH6.3 to 82% at pH 8.6. Inhibition at pH7.4 (maximum 73%) was half-maximal at 3.1 Pa (0.031 matm) CO. The pH optimum of the mutant enzyme was lower in the presence of CO. Steady-state kinetic analysis of acetylene reduction indicated that CO was a linear, intersecting, non-competitive inhibitor of acetylene reduction with Kii = 2.5 Pa and Kis = 9.5 Pa. This may indicate that a single high-affinity CO-binding site in the NifV- Kp1 protein can cause both partial inhibition of H2 evolution and total elimination of acetylene reduction. Various models to explain the data are discussed.  相似文献   

4.
5.
The microbial production of ethanol from D-xylose by a new soil isolate of Klebsiella pneumoniae and the mutants K. pneumoniae MB-16 and MB-16-1048 was studied. Kinetic and physiological properties of the mutants were compared with those of the original isolate. The volumetric rates of ethanol formation by mutants MB-16-1048 and MB-16 and the original isolate were 1.58, 0.50, and 0.06 g liter-1 h-1, respectively. The cultivation times of mutants MB-16-1048 and MB-16 were 20 and 18 h, respectively, and that of the original isolate was 118 h. Both the mutants exhibited metabolic similarities with the original isolate. Ethanol was the major end product of fermentation in all three strains. Acetic acid and carbon dioxide were the other two important by-products of fermentation. Pyruvic acid was accumulated in significant proportions as an intermediate. The proportion of pyruvate in the original isolate was 54% of the total D-xylose utilized, whereas for MB-16 and MB-16-1048 the values were about 42 and 22%, respectively. The lower fractions of pyruvate in mutants MB-16 and MB-16-1048 showed up as a 41 and 82% improvement, respectively, over the original isolate in terms of the ethanol yield.  相似文献   

6.
N Misawa  S Yamano    H Ikenaga 《Applied microbiology》1991,57(6):1847-1849
The Erwinia uredovora crtB, crtE, crtI, and crtY genes required for beta-carotene biosynthesis were introduced by conjugal transfer into an ethanol-producing bacterium, Zymomonas mobilis, and a phytopathogenic bacterium, Agrobacterium tumefaciens, in which no carotenoid is synthesized. The transconjugants of Z. mobilis and A. tumefaciens carrying these genes appeared as yellow colonies and produced 220 and 350 micrograms of beta-carotene per g of dry weight, respectively, in the stationary phase in liquid culture.  相似文献   

7.
1. A new procedure is described for selecting nitrogenase-derepressed mutants based on the method of Brenchley et al. (Brenchley, J.E., Prival, M.J. and Magasanik, B. (1973) J. Biol. Chem. 248, 6122-6128) for isolating histidase-constitutive mutants of a non-N2-fixing bacterium. 2. Nitrogenase levels of the new mutants in the presence of NH4+ were as high as 100% of the nitrogenase activity detected in the absence of NH4+. 3. Biochemical characterization of these nitrogen fixation (nif) derepressed mutants reveals that they fall into three classes. Three mutants (strains SK-24, 28 and 29), requiring glutamate for growth, synthesize nitrogenase and glutamine synthetase constitutively (in the presence of NH4+). A second class of mutants (strains SK-27 and 37) requiring glutamine for growth produces derepressed levels of nitrogenase activity and synthesized catalytically inactive glutamine synthetase protein, as determined immunologically. A third class of glutamine-requiring, nitrogenase-derepressed mutants (strain SK-25 and 26) synthesizes neither a catalytically active glutamine synthetase enzyme nor an immunologically cross-reactive glutamine synthetase protein. 4. F-prime complementation analysis reveals that the mutant strains SK-25, 26, 27, 37 map in a segment of the Klebsiella chromosome corresponding to the region coding for glutamine synthetase. Since the mutant strains SK-27 and SK-37 produce inactive glutamine synthetase protein, it is concluded that these mutations map within the glutamine synthetase structural gene.  相似文献   

8.
The Erwinia uredovora crtB, crtE, crtI, and crtY genes required for beta-carotene biosynthesis were introduced by conjugal transfer into an ethanol-producing bacterium, Zymomonas mobilis, and a phytopathogenic bacterium, Agrobacterium tumefaciens, in which no carotenoid is synthesized. The transconjugants of Z. mobilis and A. tumefaciens carrying these genes appeared as yellow colonies and produced 220 and 350 micrograms of beta-carotene per g of dry weight, respectively, in the stationary phase in liquid culture.  相似文献   

9.
The microbial production of ethanol from D-xylose by a new soil isolate of Klebsiella pneumoniae and the mutants K. pneumoniae MB-16 and MB-16-1048 was studied. Kinetic and physiological properties of the mutants were compared with those of the original isolate. The volumetric rates of ethanol formation by mutants MB-16-1048 and MB-16 and the original isolate were 1.58, 0.50, and 0.06 g liter-1 h-1, respectively. The cultivation times of mutants MB-16-1048 and MB-16 were 20 and 18 h, respectively, and that of the original isolate was 118 h. Both the mutants exhibited metabolic similarities with the original isolate. Ethanol was the major end product of fermentation in all three strains. Acetic acid and carbon dioxide were the other two important by-products of fermentation. Pyruvic acid was accumulated in significant proportions as an intermediate. The proportion of pyruvate in the original isolate was 54% of the total D-xylose utilized, whereas for MB-16 and MB-16-1048 the values were about 42 and 22%, respectively. The lower fractions of pyruvate in mutants MB-16 and MB-16-1048 showed up as a 41 and 82% improvement, respectively, over the original isolate in terms of the ethanol yield.  相似文献   

10.
Klebsiella pneumoniae H12 produced a newly identified extracellular polysaccharide in an ethanol medium with a yield of 3.0 g/l. The molar composition of the polysaccharide was 56.04% galactose, 25.92% glucose, 10.92% galacturonic acid, 3.71% mannose, and 3.37% glucuronic acid. The addition of 0.5%-1.5% NaCl increased production. The polysaccharide flocculated with kaolin clay in suspension at the concentration of 1 ppm in a 300-ppm solution of CaCl2. Almost all bacterial species cells aggregated in the polysaccharide solution. The ability to flocculate with kaolin clay changed with the pH and with the concentrations of coexisting cation and anion species. The polysaccharide flocculant may participate in in vivo bacterial aggregation or adherence to host organisms.  相似文献   

11.
12.
Cheng KK  Zhang JA  Liu DH  Sun Y  Yang MD  Xu JM 《Biotechnology letters》2006,28(22):1817-1821
Broth containing 152 g glycerol l−1 from Candida krusei culture was converted to 1,3-propanediol by Klebsiella pneumoniae. Residual glucose in the broth promoted growth of K. pneumoniae while acetate was inhibitory. After desalination treatment of glycerol broth by electrodialysis, the acetate in the broth was removed. A fed-batch culture with electrodialytically pretreated broth as␣substrate was developed giving 53 g 1,3-propanediol l−1 with a yield of 0.41 g g−1 glycerol and a productivity of 0.94 g l−1 h−1.  相似文献   

13.
14.
15.
A strain of Klebsiella pneumoniae that used aliphatic nitriles as the sole source of nitrogen was adapted to benzonitrile as the sole source of carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae metabolized 8.4 mM benzonitrile to 4.0 mM benzoic acid and 2.7 mM ammonia. In addition, butyronitrile was metabolized to butyramide and ammonia. The isolate also degraded mixtures of benzonitrile and aliphatic nitriles. Cell extracts contained nitrile hydratase and amidase activities. The enzyme activities were higher with butyronitrile and butyramide than with benzonitrile and benzamide, and amidase activities were twofold higher than nitrile hydratase activities. K. pneumoniae appears promising for the bioremediation of sites contaminated with aliphatic and aromatic nitriles.  相似文献   

16.
17.
A gram-negative rod-shaped bacterium capable of utilizing acrylonitrile as the sole source of nitrogen was isolated from industrial sewage and identified as Klebsiella pneumoniae. The isolate was capable of utilizing aliphatic nitriles containing 1 to 5 carbon atoms or benzonitrile as the sole source of nitrogen and either acetamide or propionamide as the sole source of both carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae was capable of hydrolyzing 6.15 mmol of acrylonitrile to 5.15 mmol of acrylamide within 24 h. The acrylamide was hydrolyzed to 1.0 mmol of acrylic acid within 72 h. Another metabolite of acrylonitrile metabolism was ammonia, which reached a maximum concentration of 3.69 mM within 48 h. Nitrile hydratase and amidase, the two hydrolytic enzymes responsible for the sequential metabolism of nitrile compounds, were induced by acrylonitrile. The optimum temperature for nitrile hydratase activity was 55°C and that for amidase was 40°C; both enzymes had pH optima of 8.0.Abbreviations PBM phosphate buffered medium - GC gas chromatography - GC/MS gas chromatography/mass spectrometry  相似文献   

18.
Regulation of Klebsiella pneumoniae hut operons by oxygen.   总被引:1,自引:3,他引:1       下载免费PDF全文
We investigated the regulation of genes concerned with nitrogen metabolism by oxygen in the facultative anaerobe Klebsiella pneumoniae. We found oxygen to be required for the expression of the hut operons; the effect of O2 on the glutamine synthetase and urease was less pronounced than on the hut operons. Glutamine synthetase was transiently repressed during the transition from an aerobic to an anaerobic environment. Regulation of hut by O2 suppressed the effect of nitrogen limitation on the expression of these genes.  相似文献   

19.
Nitrate reductase (nar) A, B and E mutants of Escherichia coli with plasmids carrying Klebsiella pneumoniae nitrogen fixation (nif) genes reduced acetylene independently of added molybdate, but nar D mutants showed pleiotropic dependence on the concentration of added molybdate for expression of both nar and nif. No complementation of nar mutations by nif occurred; nitrite but not nitrate repressed nif in nar hosts. Derepression of nif occurred in molybdenum-deficient nar D (nif) strains since nitrogenase peptides were present. nifB mutants, thought to have a lesion in the pathway of molybdenum to nitrogenase, as well as nif deletion mutants, had normal nitrate reductase activity.  相似文献   

20.
The most important function of carotenoid pigments, especially beta-carotene in higher plants, is to protect organisms against photooxidative damage (G. Britton, in T. W. Goodwin, ed., Plant Pigments--1988, 1988; N. I. Krinsky, in O. Isler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). beta-Carotene also functions as a precursor of vitamin A in mammals (G. A. J. Pitt, in I. Osler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). The enzymes and genes which mediate the biosynthesis of cyclic carotenoids such as beta-carotene are virtually unknown. We have elucidated for the first time the pathway for biosynthesis of these carotenoids at the level of enzyme-catalyzed reactions, using bacterial carotenoid biosynthesis genes. These genes were cloned from a phytopathogenic bacterium, Erwinia uredovora 20D3 (ATCC 19321), in Escherichia coli and located on a 6,918-bp fragment whose nucleotide sequence was determined. Six open reading frames were found and designated the crtE, crtX, crtY, crtI, crtB, and crtZ genes in reference to the carotenoid biosynthesis genes of a photosynthetic bacterium, Rhodobacter capsulatus; only crtZ had the opposite orientation from the others. The carotenoid biosynthetic pathway in Erwinia uredovora was clarified by analyzing carotenoids accumulated in E. coli transformants in which some of these six genes were expressed, as follows: geranylgeranyl PPiCrtB----prephytoene PPiCrtE----phytoeneCrtI---- lycopeneCrtY----beta-caroteneCrtZ----zeaxanthinCrtX--- -zeaxanthin-beta- diglucoside. The carotenoids in this pathway appear to be close to those in higher plants rather than to those in bacteria. Also significant is that only one gene product (CrtI) for the conversion of phytoene to lycopene is required, a conversion in which four sequential desaturations should occur via the intermediates phytofluene, zeta-carotene, and neurosporene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号