首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greater than 85% of the transport-impaired PiZ variant of human alpha 1-antitrypsin is retained within transfected mouse hepatoma cells and is subjected to intracellular degradation (Le, A., Graham, K., and Sifers, R.N. (1990) J. Biol. Chem. 265, 14001-14007). The retained protein undergoes a discrete size reduction that results from the modification of its endoglycosidase H-sensitive oligosaccharides and is inhibited by 1-deoxymannojirimycin. Metabolic poisons and inhibitors of protein synthesis perturb the intracellular degradation of the retained protein but do not affect its size reduction. The ability of metabolic poisons to influence the degradation of the PiZ variant in cells treated with brefeldin A indicates that export of the macromolecule from the endoplasmic reticulum (ER) is not the energy-dependent component of its degradation. Subcellular fractionation experiments have verified that both the size reduction and degradation of the retained PiZ variant occur within the rough ER. Finally, sedimentation velocity centrifugation analysis of radiolabeled cell extracts has indicated that approximately 80% of the PiZ variant consists as soluble aggregates immediately after its synthesis. An inability to detect more extensive aggregation during the retention period supports our previous conclusion that only a small fraction of the macromolecules actually form large insoluble aggregates (Graham, K.S., Le, A., and Sifers, R.N. (1990) J. Biol. Chem. 265, 20463-20468). Overall, these findings indicate that soluble aggregates of the PiZ variant are degraded within the ER by a mechanism sensitive to inhibitors of protein synthesis.  相似文献   

2.
The naturally occurring PiZ and Pi NullHong Kong variants of the human secretory protein alpha 1-antitrypsin (AAT) are retained within an early compartment of the secretory pathway. Intracellular degradation of these transport-impaired secretory proteins is initiated 30-45 min following their synthesis and translocation into the endoplasmic reticulum (ER). Interestingly, the overall rate of degradation of the retained mutant protein is significantly accelerated when all subcellular compartments are buffered at pH 6. In contrast, degradation is virtually abolished when intravesicular compartments are buffered at pH 8. However, despite this pH sensitivity neither lysosomotrophic amines, leupeptin, or leucine methyl ester have an apparent effect on the intracellular removal of the PiZ variant. The inability of a variety of inhibitors of ER-to-Golgi protein trafficking to hinder the degradative process suggests that degradation of the PiZ variant occurs prior to its delivery to the Golgi complex. To biochemically map the subcellular site of the degradation of the retained mutant protein, a recombinant truncated PiZ variant containing the tetrapeptide KDEL at its carboxyl terminus (a signal for sorting luminal proteins from a post-ER compartment back to the ER) was expressed in cells. Attachment of this ER-recycling signal to the recombinant protein prevented its intracellular degradation. These findings indicate that degradation of the PiZ variant occurs following its export from the ER.  相似文献   

3.
A C-terminal signal prevents secretion of luminal ER proteins   总被引:260,自引:0,他引:260  
S Munro  H R Pelham 《Cell》1987,48(5):899-907
Proteins that permanently reside in the lumen of the endoplasmic reticulum (ER) must somehow be distinguished from newly synthesized secretory proteins, which pass through this compartment on their way out of the cell. Three luminal ER proteins whose sequence is known, grp78 ("BiP"), grp94, and protein disulphide isomerase, share the carboxy-terminal sequence Lys-Asp-Glu-Leu (KDEL). We show that deletion (or extension) of the carboxyl terminus of grp78 results in secretion of this protein when it is expressed in COS cells. Conversely, a derivative of chicken lysozyme containing the last six amino acids of grp78 fails to be secreted and instead accumulates in the ER. We propose that the KDEL sequence marks proteins that are to be retained in the ER and discuss possible retention mechanisms.  相似文献   

4.
5.
alpha 1-Antitrypsin (AAT) is a major hepatic secretory protein. The elevated synthesis of human AAT within hepatocytes of transgenic mice results in its accumulation within a subset of distended cisternae of the rough endoplasmic reticulum. The protein does not accumulate in large insoluble aggregates as is the case for the human PiZ AAT variant. Furthermore, the accumulated protein is not associated with immunoglobulin heavy chain binding protein. Transgenic animals exhibiting an elevated synthesis and subsequent intrahepatic accumulation of human AAT exhibit reduced serum levels of murine AAT as a result of its hindered secretion and accumulation within the rough endoplasmic reticulum. Interestingly, the secretion of murine transferrin and albumin which represent glycosylated and non-glycosylated hepatic secretory proteins, respectively, is unaffected. Overall, these results demonstrate that the elevated synthesis of human AAT can hinder the export of murine AAT from the hepatic rough endoplasmic reticulum in an apparently specific manner.  相似文献   

6.
7.
Different sorting of Lys-Asp-Glu-Leu proteins in rat liver.   总被引:11,自引:0,他引:11  
Most of the resident soluble proteins of the endoplasmic reticulum (ER) seem to be sorted into this compartment via their COOH-terminal tetrapeptide Lys-Asp-Glu-Leu (KDEL). This sorting is supposed to occur in a post-ER compartment. Three resident soluble ER glycoproteins belonging to the KDEL family are CaBP1, CaBP2, CaBP3 (= calreticulin), and CaBP4 (= grp94) (Nguyen Van, P., Peter, F., and S?ling, H.-D. (1989) J. Biol. Chem. 264, 17494-17501). In rat liver, calreticulin possesses a carbohydrate moiety of the complex hybrid type with terminal galactoses (Nguyen Van, P., Peter, F., and S?ling, H.-D. (1989) J. Biol. Chem. 264, 17494-17501). We can show now that practically all calreticulin molecules (and not only a fraction) possess terminal galactoses as well as the COOH-terminal KDEL sequence. This as well as pulse-chase experiments performed at 37 and 15 degrees C indicate that calreticulin must have passed through the trans-Golgi. Subcellular fractionations of post-mitochondrial supernatants from isolated rat hepatocytes by sucrose-Nycodenz gradient centrifugation revealed that calreticulin is confined mainly to the rough ER, grp94 mainly to the smooth ER. CaBP1, a member of the thioredoxin family, was recovered in fractions which most likely represent the intermediate compartment. This indicates that KDEL is a sorting signal which leads to the retention of these proteins in the pre-Golgi compartments. However, additional factors, most likely residing within the specific KDEL protein itself, determine the final location of the protein within the pre-Golgi compartments. This is underlined by experiments in which the density dependent distribution of total KDEL proteins was studied using a COOH-terminal KDEL-specific antibody.  相似文献   

8.
The mechanism by which endoplasmic reticulum (ER) stress proteins are induced by the accumulation of incompletely assembled or malfolded proteins in the ER is poorly understood. The 78-kDa glucose-regulated protein (BiP), one of the ER stress proteins, has often been detected in stable complexes with these accumulated proteins. We have transfected COS cells with an immunoglobulin (Ig) mu heavy chain expression plasmid. Expressed mu-chain accumulated in the cells and formed stable complexes with BiP. As a result, the synthesis of three ER stress proteins, BiP, the 94-kDa glucose-regulated protein (GRP94/ERp99), and ERp72, was increased as were their mRNA levels. In addition, the degradation rate of BiP was increased, possibly because of its interaction with mu-chain. Cotransfection of the mu-chain plasmid with an Ig lambda light chain expression plasmid resulted in the appearance of mu-chain in the media in a covalent complex with lambda-chain. An intracellular consequence of this was a reduction in the levels of BiP.mu-chain complex, and a diminished stimulation in the synthesis of the ER stress proteins. These results suggest that the BiP.mu-chain complex in the ER may be involved in the signaling pathway for the induction of ER stress proteins and may represent one regulatory mechanism operating in differentiating B-lymphocytes.  相似文献   

9.
10.
Immunoglobulin heavy chain binding protein (BiP) (also known as GRP 78) is a protein of the endoplasmic reticulum (ER) which has been shown to be involved in post-translational processing of nascent membrane and secretory proteins. To determine BiP's location in the exocytic pathway, we localized BiP at the electron microscopic level in mouse myeloma cell lines by immunoperoxidase cytochemistry. BiP was found to be present within the cisternal spaces of the RER and nuclear envelope but was not detected in the cisternae of the Golgi complex. BiP reaction product was also found within transitional elements of the RER but was absent from smooth-surfaced vesicles found between the ER and the Golgi complex. Immunoperoxidase staining of BiP was reduced or absent in regions of a smooth ER membrane system in myelomas that contained endogenous murine retrovirus A particles. All compartments of the exocytic pathway, including the virus-containing smooth ER, stained for IgG, a secretory protein. These observations suggest that BiP is selectively retained in the cisternae of the ER and is not free to enter Golgi-directed transport vesicles. These studies suggest that BiP's subcellular localization may occur by selective interaction with component(s) of the ER.  相似文献   

11.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

12.
Phosphorylation of eukaryotic initiation factor-2 (eIF2) by pancreatic eIF2 kinase (PEK), induces a program of translational expression in response to accumulation of malfolded protein in the endoplasmic reticulum (ER). This study addresses the mechanisms activating PEK, also designated PERK or EIF2AK3. We describe the characterization of two regions in the ER luminal portion of the transmembrane PEK that carry out distinct functions in the regulation of this eIF2 kinase. The first region mediates oligomerization between PEK polypeptides, and deletion of this portion of PEK blocked induction of eIF2 kinase activity. The second characterized region of PEK facilitates interaction with ER chaperones. In the absence of stress, PEK associates with ER chaperones GRP78 (BiP) and GRP94, and this binding is released in response to ER stress. ER luminal sequences flanking the transmembrane domain are required for GRP78 interaction, and deletion of this portion of PEK led to its activation even in the absence of ER stress. These results suggest that this ER chaperone serves as a repressor of PEK activity, and release of ER chaperones from PEK when misfolded proteins accumulate in the ER induces gene expression required to enhance the protein folding capacity of the ER.  相似文献   

13.
14.
15.
Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indirect immunofluorescence, immunoelectron microscopy, and a novel Nycodenz gradient centrifugation procedure for separating the ER, the intermediate compartment, and the Golgi complex. We also employed the folding and recycling inhibitors dithiothreitol and AIF4-, and coimmunoprecipitation with calnexin antibodies. The results showed that the misfolded G protein is not retained in the ER alone; it can move to the intermediate compartment and to the cis-Golgi network but is then recycled back to the ER. In the ER it is associated with calnexin and BiP/GRP78. Of these two chaperones, only BiP/GRP78 seems to accompany it through the recycling circuit. Thus, the retention of this misfolded glycoprotein is the result of multiple mechanisms including calnexin binding in the ER and selective retrieval from the intermediate compartment and the cis-Golgi network.  相似文献   

16.
Synaptotagmin (Syt) is a family of type I membrane proteins that consists of a single transmembrane domain, a spacer domain, two Ca(2+)-binding C2 domains, and a short C terminus. We recently showed that deletion of the short C terminus (17 amino acids) of Syt IV prevented the Golgi localization of Syt IV proteins in PC12 cells and induced granular structures of various sizes in the cell body by an unknown mechanism (Fukuda, M., Ibata, K., and Mikoshiba, K. (2001) J. Neurochem. 77, 730-740). In this study we showed by electron microscopy that these structures are crystalloid endoplasmic reticulum (ER), analyzed the mechanism of its induction, and demonstrated that: (a) mutation or deletion of the evolutionarily conserved WHXL motif in the C terminus of the synaptotagmin family (Syt DeltaC) destabilizes the C2B domain structure (i.e. causes misfolding of the protein), probably by disrupting the formation of stable anti-parallel beta-sheets between the beta-1 and beta-8 strands of the C2B domain; (b) the resulting malfolded proteins accumulate in the ER rather than being transported to other membrane structures (e.g. the Golgi apparatus), with the malfolded proteins also inducing the expression of BiP (immunoglobulin binding protein), one of the ER stress proteins; and (c) the ERs in which the Syt DeltaC proteins have accumulated associate with each other as a result of oligomerization capacity of the synaptotagmin family, because the Syt IDeltaC mutant, which lacks oligomerization activity, cannot induce crystalloid ER. Our findings indicate that the conserved WHXL motif is important not only for protein interaction site but for proper folding of the C2B domain.  相似文献   

17.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

18.
19.
Proteins are co-translationally transferred into the endo-plasmic reticulum (ER) and then either retained or transported to different intracellular compartments or to the extracellular space. Various molecular signals necessary for retention in the ER or targeting to different compartments have been identified. In particular, the HDEL and KDEL signals used for retention of proteins in yeast and animal ER have also been described at the C-terminal end of soluble ER processing enzymes in plants. The fusion of a KDEL extension to vacuolar proteins is sufficient for their retention in the ER of transgenic plant cells. However, recent results obtained using the same strategy indicate that HDEL does not contain sufficient information for full retention of phaseolin expressed in tobacco. In the present study, an HDEL C-terminal extension was fused to the vacuolar or extracellular (Δpro) forms of sporamin. The resulting SpoHDEL or ΔproHDEL, as well as Spo and Δpro, were expressed at high levels in transgenic tobacco cells ( Nicotiana tabacum cv BY2). The intracellular location of these different forms of recombinant sporamin was studied by subcellular fractionation. The results clearly indicate that addition of an HDEL extension to either Spo or Δpro induces accumulation of these sporamin forms in a compartment that co-purifies with the ER markers NADH cytochrome C reductase, binding protein (BiP) and calnexin. In addition, a significant SpoHDEL or ΔproHDEL fraction that escapes the ER retention machinery is transported to the vacuole. From these results, it may be proposed that, in addition to its function as an ER retention signal, HDEL could also act in quality control by targeting chaperones or chaperone-bound proteins that escape the ER to the plant lysosomal compartment for degradation.  相似文献   

20.
Characterization and purification of the 94-kDa glucose-regulated protein   总被引:2,自引:0,他引:2  
Increased synthesis of so-called glucose-regulated proteins (grp) of 78 and 94 kDa occurs in mammalian cells exposed to a variety of agents, including 2-mercaptoethanol, tunicamycin, agents which perturb calcium homeostasis, and amino acid analogs. Herein we describe a number of properties of 94-kDa grp (grp 94) and present a method for its purification to homogeneity. The protein, within the endoplasmic reticulum (ER), is modified by the addition of high mannose-containing oligosaccharides. The predicted amino acid sequence of grp 94, as determined by others, has revealed the protein to contain a putative transmembrane domain near its amino terminus, but in addition, a potential endoplasmic reticulum retention sequence (KDEL) at its COOH terminus. Consequently, the question of whether grp 94 exists as a transmembrane or luminal protein of the ER remains controversial. Results using isolated microsomes subjected to either limited proteolysis or lactoperoxidase-mediated iodination were consistent with the idea that the grp is a transmembrane protein. On the other hand, using the method of sodium carbonate extraction, grp 94 exhibited properties of both a luminal and integral membrane protein. These results raise the question of whether there exist two different forms of grp 94 within the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号