首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pentoxifylline (PTX), a methylxanthine, can suppress polymorphonuclear leukocyte (PMN) activation and attenuate sepsis-induced acute lung injury. We investigated whether PTX prevents non-PMN-dependent lung injury. First we studied four groups of granulocyte-depleted guinea pigs (control, PTX, Escherichia coli, and E. coli + PTX). Lung injury was assessed by wet-to-dry lung weight (W/D) ratio and lung tissue-to-plasma 125I-albumin ratio (albumin index, AI). The E. coli group showed a significant increase in the lung W/D ratio and AI compared with the control and PTX groups. However, PTX did not prevent the E. coli-induced increase in the lung W/D ratio and AI. Next we investigated the effects of PTX on endothelial cell monolayer permeability and adenosine 3',5'-cyclic monophosphate (cAMP) levels. Whereas E. coli lipopolysaccharide (LPS) alone increased the endothelial permeability, PMNs added to the endothelial monolayers and exposed to LPS enhanced the increase. PTX attenuated the permeability increase mediated by LPS-exposed PMNs. PTX did not prevent the LPS-induced increase in permeability when PMNs were not present, although PTX increased endothelial cell cAMP levels. These data demonstrate that 1) PTX does not prevent lung injury in granulocyte-depleted guinea pigs; 2) PTX does not prevent LPS-induced increases in endothelial cell permeability, despite increased cAMP levels; and 3) PTX attenuates PMN-dependent increases in endothelial cell permeability.  相似文献   

2.
Trauma and sepsis can cause acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) in part by triggering neutrophil (PMN)-mediated increases in endothelial cell (EC) permeability. We had shown that mitochondrial (mt) damage-associated molecular patterns (DAMPs) appear in the blood after injury or shock and activate human PMN. So we now hypothesized that mitochondrial DAMPs (MTD) like mitochondrial DNA (mtDNA) and peptides might play a role in increased EC permeability during systemic inflammation and proceeded to evaluate the underlying mechanisms. MtDNA induced changes in EC permeability occurred in two phases: a brief, PMN-independent ‘spike’ in permeability was followed by a prolonged PMN-dependent increase in permeability. Fragmented mitochondria (MTD) caused PMN-independent increase in EC permeability that were abolished with protease treatment. Exposure to mtDNA caused PMN-EC adherence by activating expression of adherence molecule expression in both cell types. Cellular activation was manifested as an increase in PMN calcium flux and EC MAPK phosphorylation. Permeability and PMN adherence were attenuated by endosomal TLR inhibitors. EC lacked formyl peptide receptors but were nonetheless activated by mt-proteins, showing that non-formylated mt-protein DAMPs can activate EC. Mitochondrial DAMPs can be released into the circulation by many processes that cause cell injury and lead to pathologic endothelial permeability. We show here that mitochondria contain multiple DAMP motifs that can act on EC and/or PMN via multiple pathways. This can enhance PMN adherence to EC, activate PMN-EC interactions and subsequently increase systemic endothelial permeability. Mitochondrial DAMPs may be important therapeutic targets in conditions where inflammation pathologically increases endothelial permeability.  相似文献   

3.
We observed that the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L- phenylalanine (FMLP) induced pulmonary edema when polymorphonuclear leukocytes (PMNs) were added to isolated constant-flow buffer-perfused rabbit lungs. This study was designed to test the hypothesis that PMNs activated by FMLP induced lung injury by the modulation of reactive oxygen species (ROS), cyclooxygenase products, or cysteinyl leukotrienes (LTs). Addition of FMLP alone did not increase microvascular permeability (Kf). When PMNs were added to the isolated lung, FMLP caused an 80% increase in Kf. Wet-to-dry weight ratio was also significantly increased with PMNs + FMLP compared with FMLP only. There was a significant positive correlation between total myeloperoxidase activity in lung tissue and Kf values after FMLP (30 min). Pretreatment with two dissimilar cyclooxygenase inhibitors, meclofenamate or ibuprofen, had no effect on the PMN + FMLP-induced increase in Kf. However, the ROS inhibitor catalase and the nonantioxidant LT synthesis blocker MK 886 inhibited the PMN + FMLP increase in Kf. Perfusate levels of LTs (LTC4, -D4, and -E4) were significantly increased from baseline values 30 min after FMLP. Both MK 886 and catalase suppressed the elevation of LTs after PMN + FMLP. These results indicate that FMLP increased a pulmonary microvascular permeability in isolated buffer-perfused rabbit lungs that is PMN dependent and mediated by LT produced possibly by a result of ROS production.  相似文献   

4.
We have developed a method for studying the permeability properties of human endothelia in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured on a substrate of human amnion. Confluent monolayers of these cells demonstrated 6-12 delta.cm2 of electrical resistance (a measure of their permeability to ions) and restricted the transendothelial passage of albumin from their apical to their basal surface. To determine whether leukocyte emigration alters endothelial permeability in this model, we examined the effects of migrating human polymorphonuclear leukocytes (PMN) on these two parameters. Few PMN migrated across the HUVEC monolayers in the absence of chemoattractants. In response to chemoattractants, PMN migration through HUVEC monolayers was virtually complete within 10 minutes and occurred at random locations throughout the monolayer. PMN migrated across the monolayer via the paracellular pathway. Although one PMN migrated across the monolayer for each HUVEC, PMN migration induced no change in electrical resistance or albumin permeability of these monolayers. At this PMN:HUVEC ratio, these permeability findings were correlated morphologically to measurements that HUVEC paracellular pathway size increases by less than 0.22% with PMN migration. This increase is insufficient to effect a measurable change in the electrical resistance of the endothelial cell monolayer. These findings demonstrate that increased permeability of cultured endothelial cell monolayers is not a necessary consequence of PMN emigration.  相似文献   

5.
Injection of phorbol 12-myristate 13-acetate (PMA) into polymorphonuclear leukocyte (PMN)-depleted, PMN cytoplast-repleted New Zealand White rabbits caused the development of acute lung injury in vivo. PMN cytoplasts are nucleus- and granule-free vesicles of cytoplasm capable of releasing toxic O2 radicals but incapable of releasing granule enzymes. PMN cytoplasts when activated by PMA reduced 66 +/- 12.7 nmol of cytochrome c compared with 2.6 +/- 0.7 nmol in their resting state and did not release a significant quantity of granule enzymes (P greater than 0.05). Injection of PMA into New Zealand White rabbits caused a significant decrease (P less than 0.05) in the number of circulating cytoplasts. Increases in lung weight-to-body weight ratios in PMA-treated rabbits (9.8 +/- 0.5 X 10(-3] compared with saline-treated rabbits (5.3 +/- 0.2 X 10(-3] were also noted. Levels of angiotensin-converting enzyme in lung lavage as well as the change in alveolar-arterial O2 ratio correlated with the numbers of cytoplasts in lung lavage (P = 0.001, r = 0.84 and P = 0.0166, r = 0.73, respectively). Albumin in lung lavage increased to 1,700 +/- 186 mg/ml in PMA-treated rabbits from 60 +/- 30 mg/ml in saline-treated rabbits. These changes were attenuated by pretreatment of rabbits with dimethylthiourea (DMTU). In vitro, cytoplasts were able to mediate increases in endothelial monolayer permeability. This was evidenced by increases in fractional transit of albumin across endothelial monolayers when treated with PMA-activated cytoplasts (0.08 +/- 0.01 to 0.28 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Albumin is a major determinant of eicosanoid formation, affecting autacoids important in cell-cell interactions. We delineated three mechanisms by which albumin controlled platelet eicosanoid formation: 1) Albumin diverted free arachidonate toward 12-lipoxygenation. 2) Albumin enhanced release of arachidonate from phospholipids. 3) Albumin inhibited incorporation of arachidonate from the medium into platelet phospholipids. 12(S)-Hydroxyheptadecatrienoic acid (12-HHTrE) formation was reduced 70% by albumin as compared to that formed in albumin-free medium. In sharp contrast, formation of 12(S)-hydroxyeicosatetraenoic acid (12-HETE), the platelet lipoxygenase product, was much less influenced by albumin. Moreover, 12-HETE production in the presence of albumin was markedly increased and prolonged after aspirin treatment. These data suggested that albumin redirected released endogenous arachidonate from cyclooxygenase to lipoxygenase. Therefore, the metabolic fate of arachidonate present in the medium of stimulated platelets was studied by adding tracer [3H]arachidonate 30 sec before thrombin. Albumin increased arachidonate metabolism by lipoxygenase 7-fold as compared to albumin-free controls, while cyclooxygenation increased 2.7-fold. Redirection of eicosanoid metabolism by albumin toward lipoxygenase products constitutes a heretofore undescribed and potentially important physiological role for albumin. In vitro utilization of albumin may reflect in vivo events in thrombosis and hemostasis more accurately than previous studies without albumin could appreciate.  相似文献   

7.
Uncontrolled transmigration of polymorphonuclear leukocytes (PMNs) into the different compartments of the lungs (intravascular, interstitial, alveolar) is a critical event in the early stage of acute lung injury and acute respiratory distress syndrome. Adenosine receptor A(2b) is highly expressed in the inflamed lungs and has been suggested to mediate cell trafficking. In a murine model of LPS-induced lung inflammation, we investigated the role of A(2b) on migration of PMNs into the different compartments of the lung. In A(2b)(-/-) mice, LPS-induced accumulation of PMNs was significantly higher in the interstitium, but not in the alveolar space. In addition, pulmonary clearance of PMNs was delayed in A(2b)(-/-) mice. Using chimeric mice, we identified A(2b) on hematopoietic cells as crucial for PMN migration. A(2b) did not affect the release of relevant chemokines into the alveolar space. LPS-induced microvascular permeability was under the control of A(2b) on both hematopoietic and nonhematopoietic cells. Activation of A(2b) on endothelial cells also reduced formation of LPS-induced stress fibers, highlighting its role for endothelial integrity. A specific A(2b) agonist (BAY 60-6583) was effective in decreasing PMN migration into the lung interstitium and microvascular permeability. In addition, in vitro transmigration of human PMNs through a layer of human endothelial or epithelial cells was A(2b) dependent. Activation of A(2b) on human PMNs reduced oxidative burst activity. Together, our results demonstrate anti-inflammatory effects of A(2b) on two major characteristics of acute lung injury, with a distinct role of hematopoietic A(2b) for cell trafficking and endothelial A(2b) for microvascular permeability.  相似文献   

8.
Apocynin (4-hydroxy-3-methoxy-acetophenone) inhibits NADPH oxidase in activated polymorphonuclear (PMN) leukocytes, preventing the generation of reactive oxygen species. To determine if apocynin attenuates ischemia-reperfusion lung injury, we examined the effects of apocynin (0.03, 0.3, and 3 mM) in isolated in situ sheep lungs. In diluent-treated lungs, reperfusion with blood (180 min) after 30 min of ischemia (ventilation 28% O(2), 5% CO(2)) caused leukocyte sequestration in the lung and increased vascular permeability [reflection coefficient for albumin (sigma(alb)) 0.47 +/- 0.10, filtration coefficient (K(f)) 0.14 +/- 0.03 g. min(-1). mmHg(-1). 100 g(-1)] compared with nonreperfused lungs (sigma(alb) 0.77 +/- 0. 03, K(f) 0.03 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1); P < 0.05). Apocynin attenuated the increased protein permeability at 0.3 and 3 mM (sigma(alb) 0.69 +/- 0.05 and 0.91 +/- 0.03, respectively, P < 0. 05); K(f) was decreased by 3 mM apocynin (0.05 +/- 0.01 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Diphenyleneiodonium (DPI, 5 microM), a structurally unrelated inhibitor of NADPH oxidase, worsened injury (K(f) 0.32 +/- 0.07 g. min(-1). mmHg(-1). 100 g(-1), P < 0.05). Neither apocynin nor DPI affected leukocyte sequestration. Apocynin and DPI inhibited whole blood chemiluminescence and isolated PMN leukocyte-induced resazurin reduction, confirming NADPH oxidase inhibition. Apocynin inhibited pulmonary artery hypertension and perfusate concentrations of cyclooxygenase metabolites, including thromboxane B(2). The cyclooxygenase inhibitor indomethacin had no effect on the increased vascular permeability, suggesting that cyclooxygenase inhibition was not the explanation for the apocynin results. Apocynin prevented ischemia-reperfusion lung injury, but the mechanism of protection remains unclear.  相似文献   

9.
This study has examined the thrombin-stimulated release of polyunsaturated fatty acids from endothelial glycerolipids. Human umbilical vein endothelial cells were incubated with 1.25 microM [14C]arachidonate or [14C]eicosapentaenoate and then exposed to thrombin in buffered saline plus albumin. After an incorporation period of 0.5 h, the thrombin-stimulated release of the two radiolabeled fatty acids was quite similar. By contrast, after 24 h of fatty acid incorporation, the thrombin-stimulated release of radiolabeled fatty acid from cells incubated with [14C]eicosapentaenoate was only 25-30% of that from cells with [14C]arachidonate. Analysis of cellular glycerolipids indicated that 23 and 72%, respectively, of the incorporated [14C]arachidonate and [14C]eicosapentaenoate had been elongated to 22-carbon fatty acids in 24 h. Both 20- and 22-carbon 14C-labeled fatty acids were released to albumin in the medium in control incubations. Addition of thrombin stimulated the release of [14C]arachidonate and [14C]eicosapentaenoate, but not of their respective elongation products. Furthermore, endothelial cells incorporated exogenous [14C]docosatetraenoate into cellular glycerolipids but did not release it in response to thrombin. Thus, the thrombin-stimulated release of polyunsaturated fatty acids from vascular endothelial cells is highly selective for arachidonate and eicosapentaenoate. These results suggest that the extensive elongation of eicosapentaenoate by these cells serves to remove n - 3 polyunsaturated fatty acids from the pool of cellular acyl groups which are released in response to thrombin and are thus made available for metabolism by cyclooxygenase and lipoxygenase enzymes.  相似文献   

10.
Neutrophil-associated lung injury after the infusion of activated plasma   总被引:3,自引:0,他引:3  
Previous studies from our laboratory have shown that the infusion of zymosan-activated plasma (ZAP) caused large numbers of neutrophils (PMN) to accumulate in the lung. Although PMN are known to be activated by ZAP, it is unclear whether PMN delayed in the lung by ZAP infusion actually cause lung injury. The present study was designed to examine this question by measuring airway epithelial and endothelial injury. Airway epithelial injury was determined by depositing a known dose of fluorescein isothiocyanate-labeled dextran in the lung and measuring its appearance in the blood, and endothelial injury was measured by injecting colloidal carbon and measuring its accumulation in the microvasculature of the lung. The data show that ZAP infusion caused a mild epithelial and endothelial injury that did not increase either extravascular water or protein. This injury could be prevented either by depleting the animals of PMN or by pretreating them with indomethacin. In addition, the effect of ZAP infusion could be partially restored by transfusing donor PMN into the PMN-depleted animals. We conclude that ZAP infusion produces a mild lung injury that is dependent on PMN and the products of the cyclooxygenase pathway of arachidonic acid metabolism.  相似文献   

11.
We examined the effect of tumor necrosis factor alpha (TNF alpha) on the increase in pulmonary microvascular endothelial monolayer permeability induced by activated neutrophils (PMN). Layering of PMN onto endothelial monolayers followed by activation of PMN with phorbol 12-myristate 13-acetate (PMA) increased 125I-albumin clearance rate across the monolayers. Pretreatment of endothelial monolayers for 6 hr with TNF alpha (200 U/ml) potentiated the PMN-dependent increase in endothelial permeability, whereas 1 hr or 6 hr pretreatment of endothelial monolayers with 200 U/ml and 100 U/ml, respectively, TNF alpha did not enhance the response. Adherence of PMN to the endothelial cells was increased at 1 and 6 hr after TNF alpha (200 U/ml) treatment, but the adherence response was markedly greater following 6 hr of TNF alpha. The TNF alpha treatment of endothelial cells did not enhance neutrophil activation responses to PMA. Pretreatment of PMN with IB4, a MAb to the CD18 integrin, the common beta subunit of the adhesion proteins LFA-1, Mac-1, and p150,95 of PMN, reduced the increases in PMN adherence and the endothelial monolayer permeability induced by the 6 hr TNF alpha treatment. In contrast, pretreatment of PMN with OKM-1, a MAb to the CD11b epitope (alpha-subunit), had no effect on the adherence and the potentiation of the increase in permeability. The potentiation of the PMN-dependent permeability increase and enhanced endothelial adhesivity at 6 hr after TNF alpha priming of endothelial cells was dependent on protein synthesis. The results indicate that protein synthesis-dependent expression of an endothelial ligand for CD18 and resultant endothelial hyperadhesiveness potentiates the PMN-mediated increase in endothelial permeability after TNF alpha activation of endothelial cells. The priming of endothelial cells by TNF alpha may be a critical step in the mediation of endothelial injury.  相似文献   

12.

Background

Vascular endothelial growth factor (VEGF), a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined.

Methods

To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF), and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC) monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay.

Results

Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates.

Conclusion

These results suggest that VEGF suppresses the apoptosis induced by inflammatory stimuli and functions as a protective factor against acute lung injury.  相似文献   

13.
Various stimuli act on polymorphonuclear leukocytes (PMN), activating membrane-bound phospholipase A2 and C, and diglyceride lipase and then liberating unsaturated fatty acids (USFAs). These liberated USFAs are immediately metabolized through various metabolic pathways such as cyclooxygenase, lipoxygenase, phosphatidylinositol metabolism etc. It is possible that the metabolic intermediates of these pathways reveal various physiological actions. This work was undertaken to clarify whether stimuli on PMN depend on these USFAs themselves or on their oxidation products. The following results were obtained: 1. USFAs such as arachidonate and linoleate stimulate PMN, accelerating superoxide (O2) generation, depolarization of membrane potential and increase in [Ca2+]i. 2. Oxidation products of USFAs have no stimulative effect on PMN. The decrease in the stimulative effect of these USFAs following their oxidation is proportional to the quantitative decrease in non-oxidized linoleate. 3. USFAs accelerate membrane permeability of Ca2+, and their oxidation products enhance non-specific membrane permeability in proportion to the formation of monohydroxy compound. These results suggest that stimulative effects of USFAs on PMN do not depend on their oxidation products but on unoxidized fatty acids. Furthermore, among the oxidation products of the USFAs, monohydroxy compound acts as a strong perturber of membrane and accelerates membrane permeability.  相似文献   

14.
Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE-cadherin distribution was affected by PMN adhesion to the vessel wall in vivo too. This work suggests that PMN adhesion could trigger intracellular signals in EC that possibly regulate VE-cadherin /catenin complex disorganization. This effect could increase EC permeability and facilitate PMN transmigration during the acute inflammatory reaction.  相似文献   

15.
Cationic neutrophil proteins increase transendothelial albumin movement   总被引:4,自引:0,他引:4  
Neutrophils play a role in the development of pulmonary edema in many models of the adult respiratory distress syndrome, but the mechanism of their action is not completely understood. We asked whether two neutrophil secretory products, human neutrophil cationic protein (NCP) and human neutrophil elastase (HNE), would nonenzymatically alter the movement of albumin across a cultured endothelial monolayer. Both enzymes were inactivated by heating before use. HNE was additionally enzymatically inactivated with a chloromethylketone oligopeptide (CMK) inhibitor and with alpha 1-proteinase inhibitor (alpha 1-PI). Heated NCP, heated HNE, and CMK-complexed HNE all increased transendothelial albumin transfer. The cation protamine also increased albumin transfer across the endothelium and this increase was blocked by heparin. Alpha 1-PI and fetal bovine serum also prevented the cationic proteins from increasing albumin transfer. Using the release of lactate dehydrogenase as a marker of cytotoxicity, heated HNE was toxic to endothelial cells, heated NCP had only minimal toxicity, and protamine had no toxicity. Changes in endothelial cell shape with gap formation was seen after exposure to both heated HNE and heated NCP. Both the cytotoxicity associated with heated HNE and the cell shape changes associated with heated NCP and heated HNE could be blocked by heparin. These results suggest that in addition to neutrophil proteases and reactive O2 molecules, neutrophil-derived cationic proteins can directly and nonenzymatically contribute to edema formation during acute inflammation.  相似文献   

16.
To evaluate albumin transport across the pulmonary capillary endothelial and interstitial barriers, we simultaneously measured blood-to-tissue (QA,t) and blood-to-lymph (QA,l) clearances of 125I-radiolabeled albumin as well as endogenous albumin clearance (Qa,l) in the canine lung in vivo (n = 10). Steady-state prenodal lung lymph flows (Qw,l) and protein clearances were measured over a 2-h period at a constant capillary pressure (Pc, 13-33 cmH2O). Comparison between QA,t and QA,l as a function of Pc suggests that little of the albumin that crossed the capillary wall remained in the lung tissue, with most leaving in the lymph. Qw,l increased significantly as Pc increased, but lung tissue water was minimally affected. From the ratio of the clearance-Pc slopes for albumin and water, the albumin reflection coefficient was estimated to be 0.81 using QA,l and Qw,l and 0.56 using Qa,l and Qw,l. The permeability surface area product for the sum of blood-to-tissue and blood-to-lymph fluxes of labeled albumin (QA,t + QA,l) was 31 +/- 9 microliters/min, whereas that calculated from the blood-to-lymph flux of endogenous albumin (Qa,l) was 97 +/- 22 microliters/min. These data suggest that 1) both tissue and lymph accumulations of albumin must be considered when microvascular permeability is evaluated using protein tracers; 2) lymph clearance, but not tissue accumulation of albumin, was filtration dependent; and 3) lymph flow was an important contributor to the safety factor against edema formation over a moderate range of capillary pressures.  相似文献   

17.
Im JW  Kim HK  Kim ND  Choi JS  Yu BP  Yang HS  Chung HY 《Biotechnology letters》2004,26(21):1665-1669
The arachidonate cascade is important for the generation of reactive species (RS), and cyclooxygenase (COX) is a key enzyme of this cascade. Tissues of 24-month-old rat lung showed a 2-fold increase in RS, malondialdehyde and thromboxane B2 than those of 6-month-old rat. We found that the effects of 50 microM H2O2 and 200 microM t-butylhydroperoxide (t-BHP) specify on COX activity, and that their effects increased cytosolic COX activity in a concentration-dependent manner (1-50 microM) in 24-month-old rat. Our results suggested that COX activators such as t-BHP and H2O2, which are located in cytosol, are essential for the activation of COX in aged lung.  相似文献   

18.
Mediators of angiogenesis such as VEGFs and angiopoietins may regulate pulmonary vascular permeability under normal and pathological conditions. Ephrin family receptor tyrosine kinases are expressed in the vasculature and also regulate angiogenesis under some circumstances, but whether they also modulate lung vascular permeability is unknown. We hypothesized that stimulation of lung endothelial EphA receptors with ephrin-a1 ligand would alter pulmonary vascular permeability and tested this idea in vivo and in vitro. We found that ephrin-a1 ligand and EphA2 receptors are expressed in distal normal lung vasculature and that their expression is increased in injured lung, suggesting a link to mechanisms of increased permeability. Intravenous injection of ephrin-a1 caused a large increase in the leakage of labeled albumin into the lungs of rats within 30 min (293 +/- 27 vs. 150 +/- 6 ng/mg dry lung, P < 0.01), along with histological evidence of the formation of endothelial disruptions. In cultured lung vascular endothelial cells, stimulation with ephrin-a1 increased monolayer permeability by 44% (P < 0.01), a permeability change similar to that seen with VEGF stimulation of the same cells. Ephrin-a1 stimulation in vivo and in vitro was associated with histological evidence for disruptions of tight and adherens junctions. These observations describe a novel role for ephrin-a1 and EphA receptors in the regulation of vascular permeability in the lung.  相似文献   

19.
Polymorphonuclear leukocytes (PMN) may play a key role in acute lung injury and ARDS. The mechanisms of PMN-mediated lung injury include the release of inflammatory mediators, such as oxygen free radicals which cause direct tissue injury, and arachidonic acid metabolites which cause pulmonary vasoconstriction and increased vascular permeability. The goals of this in vitro study were 1) to assess the effects of PMN-activating agents (lipopolysaccharide, LPS; phorbol myristate acetate, PMA; tumor necrosis factor, TNF) on PMN thromboxane B2 (TXB2) release and oxygen free radical production and 2) to determine the effects of agents purported to suppress PMN activity (pentoxifylline, PTX; adenosine; dibutyryl cyclic AMP, DBcAMP; and terbutaline, TBN) on activator-induced PMN TXB2 release and oxygen free radical production. PMN TXB2 release was determined by radioimmunoassay and oxygen free radical production was monitored by chemiluminescence. Our results show that 1) LPS and PMA significantly increase PMN TXB2 release, whereas tumor necrosis factor (TNF) has no effect; 2) LPS and PMA significantly increase PMN chemiluminescence; 3) DBcAMP and TBN significantly reduce LPS-induced PMN TXB2 release whereas PTX and adenosine do not; 4) TBN significantly reduces PMA-induced PMN TXB2 release whereas other agents do not; 5) All agents (PTX, adenosine, DBcAMP, and TBN) significantly reduce LPS-induced PMN chemiluminescence but none attenuate PMA-induced PMN chemiluminescence. We conclude that: LPS and PMA activate PMN manifested by TXB2 release and chemiluminescence. Additionally, all the PMN suppressing agents do attenuate some PMN functions. Of interest, PTX, adenosine, DBcAMP, and TBN have different effects depending upon functional assay and activating agent. It will be important to investigate the mechanisms by which PMN suppressing agents alter signal transduction resulting in differential effects on PMN function.  相似文献   

20.
Human endothelial cells inhibit granulocyte aggregation in vitro   总被引:5,自引:0,他引:5  
Granulocyte aggregation in response to circulating or locally released inflammatory mediators may cause vascular injury. The factors that regulate the granulocyte aggregation response and prevent its occurrence are not defined. We found that primary monolayers of human endothelial cells (EC) derived from umbilical veins released products that inhibited granulocyte aggregation. When polymorphonuclear leukocytes (PMN) and EC were incubated together, the subsequent aggregation response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) was inhibited by 40 to 60%, depending in part on the duration of incubation and the concentration of the agonist. Suspension of the granulocytes in albumin-containing buffer that had been rocked with EC monolayers had a similar effect, demonstrating that the EC release a soluble product that modulates the aggregation response. The fMLP concentration-response curve was shifted downward and to the right by EC. Incubation of the granulocytes with endothelial monolayers for various times indicated that the inhibition was maximal at 2 to 3 min, and the PMN responsiveness returned to control over the next 15 min. The inhibiting effect was not selectively directed against fMLP, because incubation of PMN with EC or suspending the PMN in supernatants from endothelial monolayers also inhibited aggregation stimulated by platelet-activating factor, leukotriene B4, and C5a desarg. Release of the inhibitory activity by EC was attenuated by indomethacin, suggesting that the activity is in part due to a cyclooxygenase pathway product. Prostacyclin (PGI2), an eicosanoid produced by EC via the cyclooxygenase pathway, inhibited granulocyte aggregation; however, PGI2 was much less potent as an inhibitor of PMN aggregation than of platelet aggregation. Furthermore, the concentration of PGI2 in buffer that had been incubated with EC was not sufficient to account for the magnitude of the PMN inhibition. The concentration of prostaglandin E2 (PGE2) was also insufficient to completely account for the inhibition. EC that had been treated with indomethacin or aspirin, which blocked the release of PGI2 and PGE2, retained the partial ability to release an activity that blunted granulocyte aggregation; this inhibiting activity was stable at 37 degrees C for 60 min. The results indicate that human EC have the biologic potential to modulate granulocyte aggregation stimulated by inflammatory mediators, and the activity is only partly due to PGI2 and other cyclooxygenase products of arachidonic acid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号