首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The envelope glycoprotein, termed the spike protein, of severe acute respiratory syndrome coronavirus (SARS-CoV) is known to mediate viral entry. Similar to other class 1 viral fusion proteins, the heptad repeat regions of SARS-CoV spike are thought to undergo conformational changes from a prefusion form to a subsequent post-fusion form that enables fusion of the viral and host membranes. Recently, the structure of a post-fusion form of SARS-CoV spike, which consists of isolated domains of heptad repeats 1 and 2 (HR1 and HR2), has been determined by x-ray crystallography. To date there is no structural information for the prefusion conformations of SARS-CoV HR1 and HR2. In this work we present the NMR structure of the HR2 domain (residues 1141-1193) from SARS-CoV (termed S2-HR2) in the presence of the co-solvent trifluoroethanol. We find that in the absence of HR1, S2-HR2 forms a coiled coil symmetric trimer with a complex molecular mass of 18 kDa. The S2-HR2 structure, which is the first example of the prefusion form of coronavirus envelope, supports the current model of viral membrane fusion and gives insight into the design of structure-based antagonists of SARS.  相似文献   

2.
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is a newly identified member of Family Coronaviridae. Coronavirus envelope spike protein S is a class I viral fusion protein which is characterized by the existence of two heptad repeat regions (HR1 and HR2) (forming a complex called fusion core). Here we report that by using in vitro bio-engineering techniques, SARS-CoV HR1 and HR2 bind to each other and form a typical 6-helix bundle. The HR2, either as a synthetic peptide or as a GST-fusion polypeptide, is a potent inhibitor of virus entry. The results do show that SARS-CoV follows the general fusion mechanism of class I viruses and this lays the ground for identification of virus fusion/entry inhibitors for this devastating emerging virus.  相似文献   

3.
To understand the roles of heptad repeat 1(HR1) and HR2 of the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) in virus-cell interactions, the conserved Leu or Ile residues located at positions 913, 927, 941, and 955 in HR1 and 1151, 1165, and 1179 in HR2 were individually replaced with an alpha-helix-breaker Pro residue. The 913P mutant was expressed mainly as a faster-migrating, lower-molecular-weight S(L) form, while the wild type and all other mutants produced similar levels of both the S(L) form and the slower-migrating, higher-molecular-weight S(H) form. The wild-type S(L) form was processed to the S(H) form, whereas the S(L) form of the 913P mutant was inefficiently converted to the S(H) form after biosynthesis. None of these mutations affected cell surface expression or binding to its cognate ACE2 receptor. In a human immunodeficiency virus type 1/SARS S coexpression study, all mutants except the 913P mutant incorporated the S(H) form into the virions as effectively as did the wild-type S(H) form. The mutation at Ile-1151 did not affect membrane fusion or viral entry. The impaired viral entry of the 927P, 941P, 955P, and 1165P mutants was due to their inability to mediate membrane fusion, whereas the defect in viral entry of the 1179P mutant occurred not at the stage of membrane fusion but rather at a postfusion stage. Our study demonstrates the functional importance of HR1 and HR2 of the SARS-CoV spike protein in membrane fusion and viral entry.  相似文献   

4.
The Spike (S) glycoprotein of coronaviruses (CoV) mediates viral entry into host cells. It contains two hydrophobic heptad repeat (HR) regions, denoted HRN and HRC, which oligomerize the S glycoprotein into a trimer in the native state and when activated collapse into a six-helix bundle structure driving fusion of the host and viral membranes. Previous studies have shown that peptides of the HR regions can inhibit viral infectivity. These studies imply that the HR regions are accessible and that agents which can interact with them may prevent viral entry. In the present study, we have investigated an approach to generate antibodies that specifically recognize the HRN and HRC regions of the SARS-CoV spike (S) glycoprotein in order to evaluate whether these antibodies can inhibit viral infectivity and thus neutralize the SARS-CoV. In this regard, we incorporated HRN and HRC coiled-coil surface residues into a de novo designed two-stranded alpha-helical coiled-coil template for generating conformation-specific antibodies that recognize alpha-helices in proteins (Lu, S.M., Hodges, R.S., 2002. J. Biol. Chem. 277, 23515-23524). Eighteen surface residues from two regions of HRN and HRC were incorporated into the template and used to generate four anti-sera, HRN1, HRN2, HRC1, and HRC2. Our results show that all of the elicited anti-sera can specifically recognize HRN or HRC peptides and the native SARS-CoV S protein in an ELISA format. Flow cytometry (FACS) analysis, however, showed only HRC1 and HRC2 anti-sera could bind to native S protein expressed on the cell surface of Chinese hamster ovary cells, i.e., the cell surface structure of the S glycoprotein precluded the ability of the HRN1 or HRN2 anti-sera to see their respective epitope sites. In in vitro viral infectivity assays, no inhibition was observed for either HRN1 or HRN2 anti-serum, whereas both HRC1 and HRC2 anti-sera could inhibit SARS-CoV infection in a dose-dependent manner. Interestingly, the HRC1 anti-serum, which was a more effective inhibitor of viral infectivity compared to HRC2 anti-serum, could only bind the pre-fusogenic state of HRC, i.e., the HRC1 anti-serum did not recognize the six-helix bundle conformation (fusion state) whereas HRC2 anti-serum did. These results suggest that antibodies that are more specific for the pre-fusogenic state of HRC may be better neutralizing antibodies. Overall, these results clearly demonstrate that the two-stranded coiled-coil template acts as an excellent presentation system for eliciting helix-specific antibodies against highly conserved viral antigens and HRC1 and HRC2 peptides may represent potential candidates for use in a peptide vaccine against the SARS-CoV.  相似文献   

5.
The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.  相似文献   

6.
The distribution of the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor, an angiotensin-converting enzyme 2 (ACE2), does not strictly correlate with SARS-CoV cell tropism in lungs; therefore, other cellular factors have been predicted to be required for activation of virus infection. In the present study, we identified transmembrane protease serine 2 (TMPRSS2), whose expression does correlate with SARS-CoV infection in the upper lobe of the lung. In Vero cells expressing TMPRSS2, large syncytia were induced by SARS-CoV infection. Further, the lysosome-tropic reagents failed to inhibit, whereas the heptad repeat peptide efficiently inhibited viral entry into cells, suggesting that TMPRSS2 affects the S protein at the cell surface and induces virus-plasma membrane fusion. On the other hand, production of virus in TMPRSS2-expressing cells did not result in S-protein cleavage or increased infectivity of the resulting virus. Thus, TMPRSS2 affects the entry of virus but not other phases of virus replication. We hypothesized that the spatial orientation of TMPRSS2 vis-a-vis S protein is a key mechanism underling this phenomenon. To test this, the TMPRSS2 and S proteins were expressed in cells labeled with fluorescent probes of different colors, and the cell-cell fusion between these cells was tested. Results indicate that TMPRSS2 needs to be expressed in the opposing (target) cell membrane to activate S protein rather than in the producer cell, as found for influenza A virus and metapneumoviruses. This is the first report of TMPRSS2 being required in the target cell for activation of a viral fusion protein but not for the S protein synthesized in and transported to the surface of cells. Our findings suggest that the TMPRSS2 expressed in lung tissues may be a determinant of viral tropism and pathogenicity at the initial site of SARS-CoV infection.  相似文献   

7.
The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.  相似文献   

8.
Sha Y  Wu Y  Cao Z  Xu X  Wu W  Jiang D  Mao X  Liu H  Zhu Y  Gong R  Li W 《IUBMB life》2006,58(8):480-486
SARS-CoV spike (S) protein-mediated cell fusion is important for the viral entry mechanism and identification of SARS-CoV entry inhibitors. In order to avoid the high risks involved in handling SARS-CoV and to facilitate the study of viral fusion mechanism, we established the cell lines: SR-COS7 cells that stably express both SARS-CoV S protein and red fluorescence protein, R-COS7 cells that stably express red fluorescence protein, and AG-COS7 cells that stably express both ACE2 and green fluorescence protein, respectively. When SR-COS7 cells or R-COS7 cells were cocultured with AG-COS7 cells, syncytia with yellow fluorescence were conveniently observed after 12 h in SR-COS7 cells plus AG-COS7 cells, but not in R-COS7 cells plus AG-COS7 cells. The cell-to-cell fusion efficiency was simply determined for quantitative analysis based on the number of syncytium detected by flow cytometry. Such new cell-to-cell fusion model was further assessed by the potent HR2 peptide inhibitor, which led to the obvious decrease of the cell-to-cell fusion efficiency. The successful fusion and inhibition of cell-based binding assay shows that it can be well used for the study of SARS-CoV entry and inhibition.  相似文献   

9.
The envelope spike (S) glycoprotein of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) mediates the entry of the virus into target cells. Recent studies point out to a cell entry mechanism of this virus similar to other enveloped viruses, such as HIV-1. As it happens with other viruses peptidic fusion inhibitors, SARS-CoV S protein HR2-derived peptides are potential therapeutic drugs against the virus. It is believed that HR2 peptides block the six-helix bundle formation, a key structure in the viral fusion, by interacting with the HR1 region. It is a matter of discussion if the HIV-1 gp41 HR2-derived peptide T20 (enfuvirtide) could be a possible SARS-CoV inhibitor given the similarities between the two viruses. We tested the possibility of interaction between both T20 (HIV-1 gp41 HR2-derived peptide) and T-1249 with S protein HR1- and HR2-derived peptides. Our biophysical data show a significant interaction between a SARS-CoV HR1-derived peptide and T20. However, the interaction is only moderate (K(B)=(1.1+/-0.3)x10(5) M(-1)). This finding shows that the reasoning behind the hypothesis that T20, already approved for clinical application in AIDS treatment, could inhibit the fusion of SARS-CoV with target cells is correct but the effect may not be strong enough for application.  相似文献   

10.
Heptad repeat regions (HR1 and HR2) are highly conserved sequences located in the glycoproteins of enveloped viruses. They form a six-helix bundle structure and are important in the process of virus fusion. Peptides derived from the HR regions of some viruses have been shown to inhibit the entry of these viruses. SARS-CoV was also predicted to have HR1 and HR2 regions in the S2 protein. Based on this prediction, we designed 25 peptides and screened them using a HIV-luc/SARS pseudotyped virus assay. Two peptides, HR1-1 and HR2-18, were identified as potential inhibitors, with EC(50) values of 0.14 and 1.19microM, respectively. The inhibitory effects of these peptides were validated by the wild-type SARS-CoV assay. HR1-1 and HR2-18 can serve as functional probes for dissecting the fusion mechanism of SARS-CoV and also provide the potential of further identifying potent inhibitors for SARS-CoV entry.  相似文献   

11.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.  相似文献   

12.
Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) is initiated by specific interactions between the SARS-CoV spike (S) protein and its receptor ACE2. In this report, we screened a peptide library representing the SARS-CoV S protein sequence using a human immunodeficiency virus-based pseudotyping system to identify specific regions that affect viral entry. One of the 169 peptides screened, peptide 9626 (S residues 217-234), inhibited SARS-CoV S-mediated entry of the pseudotyped virions in 293T cells expressing a functional SARS-CoV receptor (human angiotensin-converting enzyme 2) in a dose-dependent manner (IC50 ∼ 11 μM). Alanine scanning mutagenesis was performed to assess the roles of individual residues within this region of S, which was previously uncharacterized. The effects included significant reductions in expression (K223A), viral incorporation (L218A, I230A, and N232A), and reduced viral entry (L224A, L226A, I228A, T231A, and F233A). Taken together, these results reveal a new region of the S protein that is crucial for SARS-CoV entry.  相似文献   

13.
Coronavirus (CoV) entry is mediated by the viral spike (S) glycoprotein, a class I viral fusion protein. During viral and target cell membrane fusion, the heptad repeat (HR) regions of the S2 subunit assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes; however, the exact mechanism is unclear. Here, we characterize an aromatic amino acid rich region within the ectodomain of the S2 subunit that both partitions into lipid membranes and has the capacity to perturb lipid vesicle integrity. Circular dichroism analysis indicated that peptides analogous to the aromatic domains of the severe acute respiratory syndrome (SARS)-CoV, mouse hepatitis virus (MHV) and the human CoV OC43 S2 subunits, did not have a propensity for a defined secondary structure. These peptides strongly partitioned into lipid membranes and induced lipid vesicle permeabilization at peptide/lipid ratios of 1:100 in two independent leakage assays. Thus, partitioning of the peptides into the lipid interface is sufficient to disorganize membrane integrity. Our study of the S2 aromatic domain of three CoVs provides supportive evidence for a functional role of this region. We propose that, when aligned with the fusion peptide and transmembrane domains during membrane apposition, the aromatic domain of the CoV S protein functions to perturb the target cell membrane and provides a continuous track of hydrophobic surface, resulting in lipid-membrane fusion and subsequent viral nucleocapsid entry.  相似文献   

14.
In order to complete the fusion process of SARS-CoV virus, several regions of the S2 virus envelope glycoprotein are necessary. Recent studies have identified three membrane-active regions in the S2 domain of SARS-CoV glycoprotein, one situated downstream of the minimum furin cleavage, which is considered the fusion peptide (SARSFP), an internal fusion peptide located immediately upstream of the HR1 region (SARSIFP) and the pre-transmembrane domain (SARSPTM). We have explored the capacity of these selected membrane-interacting regions of the S2 SARS-CoV fusion protein, alone or in equimolar mixtures, to insert into the membrane as well as to perturb the dipole potential of the bilayer. We show that the three peptides interact with lipid membranes depending on lipid composition and experiments using equimolar mixtures of these peptides show that different segments of the protein may act in a synergistic way suggesting that several membrane-active regions could participate in the fusion process of the SARS-CoV.  相似文献   

15.

Background

Severe acute respiratory syndrome (SARS) is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV), whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2) is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41) differs in length, and has no sequence homology with S2.

Results

Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1) an N-terminal leucine/isoleucine zipper-like sequence, and (2) a C-terminal heptad repeat located upstream of (3) an aromatic residue-rich region juxtaposed to the (4) transmembrane segment.

Conclusions

This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.  相似文献   

16.
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is known to take an endosomal pathway for cell entry; however, it is thought to enter directly from the cell surface when a receptor-bound virion spike (S) protein is affected by trypsin, which induces cleavage of the S protein and activates its fusion potential. This suggests that SARS-CoV bearing a cleaved form of the S protein can enter cells directly from the cell surface without trypsin treatment. To explore this possibility, we introduced a furin-like cleavage sequence in the S protein at amino acids 798 to 801 and found that the mutated S protein was cleaved and induced cell fusion without trypsin treatment when expressed on the cell surface. Furthermore, a pseudotype virus bearing a cleaved S protein was revealed to infect cells in the presence of a lysosomotropic agent as well as a protease inhibitor, both of which are known to block SARS-CoV infection via an endosome, whereas the infection of pseudotypes with an uncleaved, wild-type S protein was blocked by these agents. A heptad repeat peptide, derived from a SARS-CoV S protein that is known to efficiently block infections from the cell surface, blocked the infection by a pseudotype with a cleaved S protein but not that with an uncleaved S protein. Those results indicate that SARS-CoV with a cleaved S protein is able to enter cells directly from the cell surface and agree with the previous observation of the protease-mediated cell surface entry of SARS-CoV.  相似文献   

17.
Entry of SARS-CoV into a target cell is initiated by binding of the S1 domain of spike protein to a receptor, followed by conformational changes of the spike protein S2 domain, resulting in the formation of a six-helix bundle by the heptad-repeat (HR1 and HR2) regions. Our previous studies have demonstrated that peptides derived from HR2 region could inhibit SARS-CoV entry. However, synthesis of these peptides is at high cost. In this study, we designed two recombinant proteins, one containing two HR1 and one HR2 peptides (denoted HR121), and the other consisting of two HR2 and one HR1 peptides (designated HR212). These two proteins could be easily purified with the low cost of production, exhibiting high stability and potent inhibitory activity on entry of the HIV/SARS pseudoviruses with IC(50) values of 4.13 and 0.95muM, respectively. These features suggest that HR121 and HR212 can serve as potent inhibitors of SARS-CoV entry.  相似文献   

18.
Lipid rafts often serve as an entry site for certain viruses. Here, we report that lipid rafts in Vero E6 cells are involved in the entry of severe acute respiratory syndrome coronavirus (SARS-CoV). Infectivity assay showed the integrity of lipid rafts was required for productive infection of pseudotyped SARS-CoV. Depletion of plasma membrane cholesterol with MβCD relocalized raft-resident marker caveolin-1 as well as SARS-CoV receptor ACE2 to a nonraft environment, but did not significantly change the surface expression of ACE2. MβCD-treatment inhibited infectivity of pseudotyped SARS-CoV by 90%. Biochemical fractionation and confocal imaging confirmed that ACE2 colocalized with raft-resident markers. Furthermore, an ectodomain of SARS-CoV S protein (S1188HA) could associate with lipid rafts after binding to its receptor, and colocalize with raft-resident marker ganglioside GM1. The binding of S1188HA was not affected by depleting plasma membrane cholesterol. Taken together, our results support that lipid rafts serve as an entry port for SARS-CoV.  相似文献   

19.
Coronavirus entry is mediated by the viral spike (S) glycoprotein. The 180-kDa oligomeric S protein of the murine coronavirus mouse hepatitis virus strain A59 is posttranslationally cleaved into an S1 receptor binding unit and an S2 membrane fusion unit. The latter is thought to contain an internal fusion peptide and has two 4,3 hydrophobic (heptad) repeat regions designated HR1 and HR2. HR2 is located close to the membrane anchor, and HR1 is some 170 amino acids (aa) upstream of it. Heptad repeat (HR) regions are found in fusion proteins of many different viruses and form an important characteristic of class I viral fusion proteins. We investigated the role of these regions in coronavirus membrane fusion. Peptides HR1 (96 aa) and HR2 (39 aa), corresponding to the HR1 and HR2 regions, were produced in Escherichia coli. When mixed together, the two peptides were found to assemble into an extremely stable oligomeric complex. Both on their own and within the complex, the peptides were highly alpha helical. Electron microscopic analysis of the complex revealed a rod-like structure approximately 14.5 nm in length. Limited proteolysis in combination with mass spectrometry indicated that HR1 and HR2 occur in the complex in an antiparallel fashion. In the native protein, such a conformation would bring the proposed fusion peptide, located in the N-terminal domain of HR1, and the transmembrane anchor into close proximity. Using biological assays, the HR2 peptide was shown to be a potent inhibitor of virus entry into the cell, as well as of cell-cell fusion. Both biochemical and functional data show that the coronavirus spike protein is a class I viral fusion protein.  相似文献   

20.
Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4+ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号