首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
High-throughput screening of 3.87 million compounds delivered a novel series of non-steroidal GR antagonists. Subsequent rounds of optimisation allowed progression from a non-selective ligand with a poor ADMET profile to an orally bioavailable, selective, stable, glucocorticoid receptor antagonist.  相似文献   

5.
Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing’s syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (Ki = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a ‘competitive’ GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.  相似文献   

6.
7.
8.
9.
10.
11.
A class of α-methyltryptamine sulfonamide glucocorticoid receptor (GR) modulators was optimized for agonist activity. The design of ligands was aided by molecular modeling, and key function-regulating pharmacophoric points were identified that are critical in achieving the desired agonist effect in cell based assays. Compound 27 was profiled in vitro and in vivo in models of inflammation. Analogs could be rapidly prepared in a parallel approach from aziridine building blocks.  相似文献   

12.
Alopecia areata (AA) is a common disease of patchy hair loss on the scalp that can progress to cover the entire scalp and eventually the entire body. Intralesional injection of corticosteroids is the first-line therapy for adult patients, however some patients do not respond to glucocorticoid treatment effectively. To delineate the molecular mechanism underlying glucocorticoid insensitivity, we examined the expression of glucocorticoid receptor (GR) and thioredoxin reductase 1 (TrxR1). In some case of glucocorticoid-resistant AA patients, the expression of TrxR1 was decreased in outer root sheath (ORS). We then investigated the effect of TrxR1 on GR activity using recombinant adenoviruses. Overexpression of TrxR1 markedly increased GR activity in ORS cells cultured in vitro. In addition, TrxR1 protected GR activity against H(2)O(2). Finally, TrxR1-enhanced GR activity was significantly inhibited by the overexpression of dominant negative form of Trx (Trx(C32S/C35S)). These results suggest that decreased TrxR1 may be one putative cause for glucocorticoid resistance in AA, through the impact on intracellular redox system.  相似文献   

13.
Glucocorticoids regulate numerous physiological processes and are mainstays in the treatment of inflammation, autoimmune disease, and cancer. The traditional view that glucocorticoids act through a single glucocorticoid receptor (GR) protein has changed in recent years with the discovery of a large cohort of receptor subtypes arising from alternative processing of the GR gene. These isoforms differ in their expression, gene regulatory, and functional profiles. Post-translational modification of these proteins further expands GR diversity. Here, we discuss the origin and molecular properties of the GR isoforms and their contribution to the sensitivity and specificity of the glucocorticoid response.  相似文献   

14.
15.
16.
17.
Unpurified rat liver glucocorticoid-receptor complexes within cytosol show a distinct binding preference for double-stranded DNA over single-stranded DNA; the binding to Escherichia coli rRNA is negligible. Extensive purification of the receptor abolishes its ability to distinguish among DNAs of different secondary structure and the affinity of the purified receptor toward RNA is greatly enhanced, reaching 30–50% of that of DNA. The purification effect is reversible: after cytosol addition to purified receptor preparation the binding preference restores. NaCl does not mimic the effect of cytosol. The flow-through fraction of a phosphocellulose column retains the ability of crude cytosol to produce selective decrease in the receptor binding to single-stranded DNA. This effect may also be observed by using two types of DNA-cellulose bearing double-stranded or denatured DNA, pretreated with crude cytosol. Additionally, pretreatment of immobilized DNA with even low cytosol concentrations has been shown to markedly enhance receptor binding, although this enhancement was lacking specificity with respect to DNA secondary structure. The nature of cytosolic active principle and some possible regulatory implications are discussed.  相似文献   

18.
Retinoic X receptor (RXR) is a master nuclear receptor in the processes of cell development and homeostasis. Unliganded RXR exists in an autorepressed tetramer, and agonists can induce RXR dimerization and coactivator recruitment for activation. However, the molecular mechanisms involving the corepressor recruitment and antagonist-mediated repression of RXR are still elusive. Here we report the crystal structure of RXRα ligand-binding domain (LBD) complexed with silencing mediator for retinoid and thyroid hormone receptors (SMRT) corepressor motif. As the first structural report on the unliganded nuclear receptor bound to the corepressor motif, RXRαLBD-SMRT exhibits a significant structural rearrangement, compared with apoRXRαLBD tetramer. To elucidate further the molecular determinants for RXR repression by its antagonist, we also determine the crystal structure of RXRαLBD-SMRT complexed with the identified antagonist rhein. In the structure, two rhein molecules and two SMRT peptides are in the RXRαLBD tetramer, different from the case in RXRαLBD-SMRT structure, where four SMRT peptides bind to RXRαLBD tetramer. It seems that rhein induces a displacement of SMRT motif by activation function 2 (AF-2) motif binding to the receptor. Combining our current work with the published results, structural superposition of RXRαLBDs in different states reveals that RXR uses an overlapped binding site for coactivator, corepressor, and AF-2 motifs, whereas the AF-2 motif adopts different conformations for agonist or antagonist interaction and coactivator or corepressor recruitment. Taken together, we thus propose a molecular model of RXR repression on the tetramer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号