首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Role of acidic sphingomyelinase in Fas/CD95-mediated cell death   总被引:6,自引:0,他引:6  
Engagement of the Fas receptor has been reported to induce ceramide generation via activation of acidic sphingomyelinase (aSMase). However, the role of aSMase in Fas-mediated cell death is controversial. Using genetically engineered mice deficient in the aSMase gene (aSMase(-/-)), we found that thymocytes, concanavalin A-activated T cells, and lipopolysaccharide-activated B cells derived from both aSMase(-/-) and aSMase(+/+) mice were equally sensitive to Fas-mediated cell death, triggered by either anti-Fas antibody or Fas ligand in vitro. Similarly, activation-induced apoptosis of T lymphocytes was unaffected by the status of aSMase, and aSMase(-/-) mice failed to show immunological symptoms seen in animals with defects in Fas function. In vivo, intravenous injection of 3 microg/25 g mouse body weight of anti-Fas Jo2 antibody into aSMase(-/-) mice failed to affect hepatocyte apoptosis or mortality, whereas massive hepatocyte apoptosis and animal death occurred in wild type littermates. Animals heterozygous for aSMase deficiency were also significantly protected. Susceptibility of aSMase(-/-) mice to anti-Fas antibody was demonstrated with higher antibody doses (>/=4 microg/25 g mouse). These data indicate a role for aSMase in Fas-mediated cell death in some but not all tissues.  相似文献   

3.
4.
We have previously shown that lithium salts can considerably increase the direct cytotoxic effect of tumor necrosis factor (TNF) on various tumor cells in vitro and in vivo. However, the underlying mechanism has remained largely unknown. Here we show that the TNF-sensitizing effect of lithium chloride (LiCl) is independent of the type of cell death, either necrosis or apoptosis. In the case of apoptosis, TNF/lithium synergism is associated with an enhanced activation of caspases and mitochondrial cytochrome c release. Sensitization to apoptosis is specific for TNF-induced apoptosis, whereas Fas-mediated or etoposide-induced apoptosis remains unaffected. LiCl also potentiates cell death induced by artificial oligomerization of a fusion protein between FKBP and the TNF receptor-associated death domain protein. TNF-induced activation of NF-kappa B-dependent gene expression is not modulated by LiCl treatment. These results indicate that LiCl enhances TNF-induced cell death in an NF-kappa B-independent way, and suggest that the TNF receptor-associated death domain protein plays a crucial role in the TNF-sensitizing effect of LiCl.  相似文献   

5.
We recently demonstrated that heme oxygenase (HO)-1 is constitutively expressed in human CD4+CD25+ regulatory T cells and induced by anti-CD28 or anti-CD28/anti-CD3 stimulation, even in CD4+CD25- responder T cells. To study the effects of HO-1 expression on lymphocyte survival, we transfected the HO-1 gene or induced the gene to express HO-1 protein with cobalt protoporphyrin (CoPP) in Jurkat T cells. Consistently, anti-Fas antibody triggered apoptotic cell death in wild-type Jurkat T cells. Surprisingly, however, HO-1-overexpressing Jurkat T cells showed strong resistance to Fas-mediated apoptosis. In contrast, abrogation of HO-1 expression by antisense oligomer against HO-1 gene from CoPP-treated cells or depletion of iron by desferrioxamine from HO-1-transfected cells abolished the resistance. In addition, exogenously added iron rendered wild-type Jurkat T cells resistant. The resistance involved IkappaB kinase (IKK) activation via iron-induced reactive oxygen species formation, NF-kappaB activation by activated IKK, and c-FLIP expression by activated NF-kappaB. Primary CD4+ T cells induced by CoPP to express HO-1 also showed more resistance to Fas-mediated apoptosis than untreated cells. Our findings suggest that HO-1 plays a critical and nonredundant role in Fas-mediated activation-induced cell death of T lymphocytes.  相似文献   

6.
Interferon-gamma is thought to be essential for the regulation of antitumor reactions. However, the degree of responsiveness of malignant cells to IFN-gamma may have a profound influence on the overall efficacy of an antitumor response. In this study, we examined the molecular basis by which IFN-gamma differentially sensitized human primary and metastatic colon carcinoma cells to Fas-mediated apoptosis. To that end, we analyzed IFN-gamma-induced gene expression at the genome scale, followed by an analysis of the expression and function of specific genes associated with IFN-gamma- and Fas-mediated signaling. We found that although both cell populations exhibited a similar gene expression profile at the genome scale in response to IFN-gamma, the expression intensities of the IFN-gamma-regulated genes were much greater in the primary tumor. Noteworthily, two genes, one involved in IFN-gamma-mediated signaling, IFN consensus sequence-binding protein (ICSBP), and one involved in Fas-mediated signaling, caspase-1, were clearly shown to be differentially induced between the two cell lines. In the primary tumor cells, the expression of ICSBP and caspase-1 was strongly induced in response to IFN-gamma, whereas they were weakly to nondetectable in the metastatic tumor cells. Functional studies demonstrated that both caspase-1 and ICSBP were involved in Fas-mediated apoptosis following IFN-gamma sensitization, but proceeded via two distinct pathways. This study also reports for the first time the expression of ICSBP in a nonhemopoietic tumor exhibiting proapoptotic properties. Overall, in a human colon carcinoma cell model, we identified important functional contributions of two IFN-gamma-regulated genes, ICSBP and caspase-1, in the mechanism of Fas-mediated death.  相似文献   

7.
8.
Fas-mediated apoptosis plays an important role in elimination of tumor cells in vivo, but some tumor-derived cells are resistant to this mechanism. Here, we show that treatment with the histone deacetylase (HDAC) inhibitor FR901228 renders Fas-resistant osteosarcoma cell lines sensitive to Fas-mediated apoptosis by downregulating expression of cellular FLIP (cellular FLICE-inhibitory protein), an inhibitor of Fas-mediated activation of caspase-8. Moreover, sensitization to Fas-mediated apoptosis was also induced in Fas-resistant osteosarcoma cells by suppressing FLIP expression using FLIP-specific RNA interference. HDAC inhibitors including FR901228 were shown to induce downregulation of cellular FLIP through inhibiting generation of FLIP mRNA, rather than stimulating degradation at either protein or mRNA level, and the inhibition was independent of de novo protein synthesis. These results clearly indicate that some tumor cells exhibit a phenotype resistant to death receptor-mediated apoptosis by expressing cellular FLIP, and that HDAC inhibitors sensitize such resistant tumor cells by directly downregulating cellular FLIP mRNA.  相似文献   

9.
Ligation of Fas induces an apoptotic program in Jurkat cells (Jd). We describe a Jurkat T cell variant (Jr) which shows total resistance to Fas-mediated apoptosis but which exhibits sensitivity to non-death-receptor pro-apoptotic stimuli such as staurosporine. Resistance to Fas-induced apoptosis in Jr cells is correlated with high expression of Hsps. A prior heat-shock increases Hsp27 and 70 expression and protects Jd and Jr cells from Fas- and staurosporine-induced apoptosis. Staurosporine, but not the anti-Fas antibody CH11, abrogates constitutive Hsp70 expression at 37 degrees C and staurosporine also inhibit Hsp27 expression in Jd and Jr cells at 42 degrees C. These data suggest that constitutive expression of Hsp27 inhibits Fas-mediated apoptosis, but only induced expression of Hsp70 can protect T cells from staurosporine-induced apoptosis. Thus, Hsp27 could play a role in the regulation of death receptor-mediated apoptosis, while Hsp70 could regulate mitochondrial-dependent cell death.  相似文献   

10.
PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.  相似文献   

11.
A modification of protein-protein interactions can be considered to be a way to regulate cell death. Chemical cross-linking agents have been traditionally used for protein complexing. This study has been undertaken to test a possibility to induce and(or) to modify cell death by a homobifunctional cross-linker dimethyl suberimidate (DMS). It was shown that the protein cross-linking by DMS resulted in a death of transformed cells by apoptosis. DMS-induced apoptosis was accompanied by cell cycle perturbations and down-regulation of p21/Waf1 mRNA expression. The RT-PCR analysis of bcl-2 family genes revealed the engagement of mitochondria in DMS-induced cytotoxicity. Then, the influence of DMS treatment on TNF-dependent and Fas-mediated apoptosis was investigated. Cell pre-incubation with DMS resulted in their increasing sensitivity for the TNF cytotoxic effect, though activities of anti-Fas cytotoxic antibodies were inhibited. The effects observed are probably due to cross-linking of TNF-receptors. Thus, this study first demonstrated that a chemical cross-linker DMS in capable of inducing apoptosis in transformed cells and modifying TNF-dependent and Fas-mediated apoptosis.  相似文献   

12.
Nanbo A  Yoshiyama H  Takada K 《Journal of virology》2005,79(19):12280-12285
Our recent findings demonstrated that the Epstein-Barr virus-encoding small nonpolyadenylated RNA (EBER) confers resistance to various apoptotic stimuli and contributes to the maintenance of malignant phenotypes in Burkitt's lymphoma. In this study we investigated the role of EBER in the human epithelial Intestine 407 cell line, which is known to be susceptible to Fas (Apo1/CD95)-mediated apoptosis. Fas, a member of the tumor necrosis factor receptor family, transduces extracellular signals to the apoptotic cellular machinery, leading to cell death. Transfection of the EBER gene into Intestine 407 cells significantly protected the cells from Fas-mediated apoptosis, whereas EBER-negative cell lines underwent apoptosis after Fas treatment. EBER bound double-stranded RNA-dependent protein kinase R (PKR), an interferon-inducible serine/threonine kinase, and abrogated its kinase activity. Moreover, expression of the catalytically inactive dominant-negative PKR provided resistance to Fas-induced apoptosis. Expression of EBER or dominant-negative PKR also inhibited the cleavage of poly(ADP-ribose) polymerase, a mediator of the cellular response to DNA damage, downstream of the Fas-mediated apoptotic pathway. These results in combination indicate that EBER confers resistance to Fas-mediated apoptosis by blocking PKR activity in Intestine 407 cells, consistent with the idea that EBER contributes to the maintenance of epithelioid malignancies.  相似文献   

13.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

14.
15.
We have previously demonstrated that the antagonists of calmodulin (CaM) induce apoptosis of cholangiocarcinoma cells partially through Fas-mediated apoptosis pathways. Recently, CaM has been shown to bind to Fas, which is regulated during Fas or CaM antagonist-mediated apoptosis in Jurkat cells and osteoclasts. Accordingly, the present studies were designed to determine whether Fas interacts with CaM in cholangiocarcinoma cells and to elucidate its role in regulating Fas-mediated apoptosis. CaM bound to Fas in cholangiocarcinoma cells. CaM was identified in the Fas-mediated death inducing signaling complex (DISC). The amount of CaM recruited into the DISC was increased after Fas-stimulation, a finding confirmed by immunofluorescent analysis that demonstrated increased membrane co-localization of CaM and Fas upon Fas-stimulation. Consistently, increased Fas microaggregates in response to Fas-stimulation were found to bind to CaM. Fas-induced recruitment of CaM into the DISC was inhibited by the Ca(2+) chelator, EGTA, and the CaM antagonist, trifluoperazine (TFP). TFP decreased DISC-induced cleavage of caspase-8. Further, inhibition of actin polymerization, which has been demonstrated to abolish DISC formation, inhibited the recruitment of CaM into the DISC. These results suggest an important role of CaM in mediating DISC formation, thus regulating Fas-mediated apoptosis in cholangiocarcinoma cells. Characterization of the role of CaM in Fas-mediated DISC formation and apoptosis signaling may provide important insights in the development of novel therapeutic targets for cholangiocarcinoma.  相似文献   

16.
MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work.  相似文献   

17.
Immunoregulation of lymphocytes and macrophages in the peripheral immune system is achieved in part by activation-induced cell death. Members of the TNF receptor family including Fas (CD95) are involved in the regulation of activation-induced cell death. To determine whether activation-induced cell death plays a role in regulation of dendritic cells (DCs), we examined interactions between Ag-presenting murine DCs and Ag-specific Th1 CD4+ T cells. Whereas mature bone marrow- or spleen-derived DCs expressed high levels of Fas, these DCs were relatively insensitive to Fas-mediated killing by the agonist mAb, Jo-2, as well as authentic Fas ligand expressed on the CD4+ T cell line, A.E7. The insensitivity to Fas-mediated apoptosis was not affected by priming with IFN-gamma and/or TNF-alpha or by blocking the DC survival signals TNF-related activation-induced cytokine and CD40L. However, apoptosis could be induced with C2-ceramide, suggesting that signals proximal to the generation of ceramide might mediate resistance to Fas. Analysis of protein expression of several anti-apoptotic mediators revealed that expression of the intracellular inhibitor of apoptosis Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein was significantly higher in Fas-resistant DCs than in Fas-sensitive macrophages, suggesting a possible role for Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein in DC resistance to Fas-mediated apoptosis. Our results demonstrate that murine DCs differ significantly from other APC populations in susceptibility to Fas-mediated apoptosis during cognate presentation of Ag. Because DCs are most notable for initiation of an immune response, resistance to apoptosis may contribute to this function.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号