首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: High-dose IFNalpha2b (HDI) was established as the first effective adjuvant therapy for patients with high-risk resected melanoma more than a decade ago, but its fundamental molecular mechanism of action remains unclear. STAT3 and the mitogen activated protein kinases (MAPKs), especially ERK (extracellular signal-regulating kinase) and MEK (MAPK/ERK kinase), play roles in melanoma progression and host immunity. We have therefore evaluated STAT3 and MEK/ERK MAP kinases in patients with regional lymph node metastasis (stage IIIB) of melanoma in the context of a prospective neoadjuvant trial of HDI (UPCI 00-008). PATIENTS AND METHODS: In the context of this trial, HDI was administered daily for 20 doses following diagnostic biopsy, and prior to definitive surgery. Immunohistochemistry for pSTAT3, phospho-MEK1/2, phospho-ERK1/2, and EGFR was performed on paired fixed (nine patients) biopsies. RESULTS: HDI was found to down-regulate pSTAT3 (P = 0.008) and phospho-MEK1/2 (P = 0.008) levels significantly in tumor cells. Phospho-ERK1/2 was down-regulated by HDI in tumor cells (P = 0.015), but not in lymphoid cells. HDI down-regulated EGFR (P = 0.013), but pSTAT3 activation appeared not to be associated with EGFR expression and the MEK/ERK MAPK pathway. CONCLUSION: We conclude that HDI regulates MAPK signaling differentially in melanoma tumor cells and host lymphoid cells in vivo. STAT3 activation is independent of the EGFR/MEK/ERK signaling pathway.  相似文献   

2.
Specificity in signal transduction can be achieved through scaffolds, anchors, and adapters that assemble generic signal transduction components in specific combinations and locations. MEK Partner-1 (MP1) was identified as a potential "scaffold" protein for the mammalian extracellular signal-regulated kinase (ERK) pathway. To gain insight into the interactions of MP1 with the ERK pathway, we analyzed the ability of MP1 to bind to MEK1, ERK1, and to itself, and the regulation of these interactions. Gel filtration of cell lysates revealed two major MP1 peaks: a broad high molecular weight peak and a 28 kDa complex. An MP1 mutant that lost MEK1 binding no longer enhanced RasV12-stimulated ERK1 activity, and functioned as a dominant negative, consistent with the concept that MP1 function depends on facilitating these oligomerizations. Activation of the ERK pathway by serum or by RasV12 did not detectably affect MP1-MP1 dimerization or MP1-MEK1 interactions, but caused the dissociation of the MP1-ERK1 complex. Surprisingly, pharmacological inhibition of ERK activation did not restore the complex, suggesting that regulation of complex formation occurs independently of ERK phosphorylation. These results support the concept that MP1 functions as a regulator of MAP kinase signaling by binding to MEK1 and regulating its association with a larger signaling complex that may sequentially service multiple molecules of ERK.  相似文献   

3.
Lithium is widely used in the treatment of bipolar disorder, but despite its proven therapeutic efficacy, the molecular mechanisms of action are not fully understood. The present study was undertaken to explore lithium effects of the MEK/ERK cascade of protein kinases in astrocytes and neurons. In asynchronously proliferating rat cortical astrocytes, lithium decreased time- and dose-dependently the phosphorylation of MEK and ERK, with 1 mM concentrations achieving 60 and 50% inhibition of ERK and MEK, respectively, after a 7-day exposure. Lithium also inhibited [3H]thymidine incorporation into DNA and induced a G2/M cell cycle arrest. In serum-deprived, quiescent astrocytes, pre-exposure to lithium resulted in the inhibition of cell cycle re-entry as stimulated by the mitogen endothelin-1: under this experimental setting, lithium did not affect the rapid, peak phosphorylation of MEK taking place after 3-5 min, but was effective in inhibiting the long-term, sustained phosphorylation of MEK. Lithium inhibition of the astrocyte MEK/ERK pathway was independent of inositol depletion. Further, compound SB216763 inhibited Tau phosphorylation at Ser396 and stabilized cytosolic beta-catenin, consistent with the inhibition of glycogen synthase kinase-3 beta (GSK-3 beta), but failed to reproduce lithium effects on MEK and ERK phosphorylation and cell cycle arrest. In cerebellar granule neurons, millimolar concentrations of lithium enhanced MEK and ERK phosphorylation in a concentration-dependent manner, again through an inositol and GSK-3 beta independent mechanism. These opposing effects in astrocytes and neurons make lithium treatment a promising strategy to favour neural repair and reduce reactive gliosis after traumatic injury.  相似文献   

4.
5.
6.
7.
The Raf/MEK/extraceUular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ ERK-mediated growth arrest signaling.  相似文献   

8.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

9.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

10.
Activation of the ERK mitogen-activated protein (MAP) kinase pathway has been implicated in the regulation of cell growth, differentiation and senescence. In this pathway, the MAP kinases ERK1/ERK2 are phosphorylated and activated by the dual-specificity kinases MEK1 and MEK2, which in turn are activated by serine phosphorylation by a number of MAP kinase kinase kinases. We report here the chromosomal localization of the human genes encoding the MAP kinase kinase isoforms MEK1 and MEK2. Using a combination of fluorescence in situ hybridization, somatic cell hybrid analysis, DNA sequencing and yeast artificial chromosome (YAC) clone analysis, we have mapped the MEK1 gene (MAP2K1) to chromosome 15q21. We also present evidence for the presence of a MEK1 pseudogene on chromosome 8p21. The MEK2 gene (MAP2K2) was mapped to chromosome 7q32 by fluorescence in situ hybridization and YAC clone analysis.  相似文献   

11.
Sohn SJ  Lewis GM  Winoto A 《The EMBO journal》2008,27(13):1896-1906
The mitogen-activated protein kinases (MAPKs) ERK1/2, p38, and JNK are thought to determine survival-versus-death fate in developing thymocytes. However, this view was challenged by studies using 'MEK1-ERK1/2-specific' pharmacological inhibitors, which block both positive and negative selection. Recently, these inhibitors were also shown to affect MEK5, an upstream activator of ERK5, another class of MAPK with homology to ERK1/2. To define the contribution of the MEK5-ERK5 pathway in T-cell development, we retrovirally expressed dominant-negative or constitutively activated form of MEK5 to inhibit or activate the MEK5-ERK5 pathway. We demonstrate that MEK5 regulates apoptosis of developing thymocytes but has no function in positive selection. ERK5 activity correlates with the levels of Nur77 family members but not that of Bim, two effector pathways of thymocyte apoptosis. These results illustrate the critical involvement of the MEK5-ERK5 pathway in thymocyte development distinct from that of ERK1/2 and highlight the importance of the MAPK network in mediating differential effects pertaining to T-cell differentiation and apoptosis.  相似文献   

12.
RAD52 motif-containing 1 (RDM1), a key regulator of DNA double-strand break repair and recombination, has been reported to play an important role in the development of various human cancers, such as papillary thyroid carcinoma, neuroblastoma and lung cancer. However, the effect of RDM1 on osteosarcoma (OS) progression remains unclear. Here, this study mainly explored the connection between RDM1 and OS progression, as well as the underlying mechanism. It was found that RDM1 was highly expressed in OS cells compared with human osteoblast cells. Knockdown of RDM1 caused OS cell proliferation inhibition, cell apoptosis promotion and cell cycle arrest at G1 stage, whereas RDM1 overexpression resulted in the opposite phenotypes. Furthermore, RDM1 silencing leads to a significant decrease in tumour growth in xenograft mouse model. RDM1 also increased the protein levels of MEK 1/2 and ERK 1/2. All these findings suggest that RDM1 plays an oncogenic role in OS via stimulating cell cycle transition from G1 to S stage, and regulating MEK/ERK signalling pathway, providing a promising therapeutic factor for the treatment of OS.  相似文献   

13.
Confocal laser scanning microscopy was used to identify the cells within organotypic slice cultures of the developing mouse cerebral cortex that respond to estradiol treatment by phosphorylation of ERK1 and ERK2. Estrogen‐responsive cells resembled neurons morphologically and expressed the neuronal marker microtubule‐associated protein 2B. The intracellular distribution of the phospho‐ERK signal was both cytoplasmic and nuclear, but inhibition of protein synthesis abolished the appearance of the nuclear signal. ERK1and ERK2 also coimmunoprecipitated with heat shock protein 90 (Hsp90) in the cerebral cortical explants. Geldanamycin effectively disrupted this association and prevented ERK phosphorylation. Surprisingly, MEK2 but not MEK1 was the principal mediator of estradiol‐induced activation of ERK. Our data demonstrate the requirement for Hsp90 in estrogen‐induced activation of ERK1 and ERK2 by MEK2 in the developing mouse cerebral cortex and also provide insight into alternative mechanisms by which estradiol may influence cytoplasmic and nuclear events in responsive neurons via the MAP kinase cascade. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 1–12, 2002  相似文献   

14.
Baicalein, a flavonoid present in the root of Scutellaria baicalensis, is well known for its antibacterial, antiviral, anti‐inflammatory, antithrombotic, and antioxidant effects. Here we show that baicalein also attenuates cardiac hypertrophy. Aortic banding (AB) was performed to induce cardiac hypertrophy secondary to pressure overload in mice. Mouse chow containing 0.05% baicalein (dose: 100 mg/kg/day baicalein) was begun 1 week prior to surgery and continued for 8 weeks after surgery. Our data demonstrated that baicalein prevented cardiac hypertrophy and fibrosis induced by AB, as assessed by echocardiographic and hemodynamic parameters and by pathological and molecular analysis. The inhibitory action of baicalein on cardiac hypertrophy was mediated by effects on mitogen‐activated protein kinase kinase (MEK)‐extracellular signal‐regulated kinases (ERK1/2) signaling and GATA‐4 activation. In vitro studies performed in rat cardiac H9c2 cells confirmed that baicalein attenuated cardiomyocyte hypertrophy induced by angiotensin II, which was associated with inhibiting MEK‐ERK1/2 signaling. In conclusion, our results suggest that baicalein has protective potential for targeting cardiac hypertrophy and fibrosis through suppression of MEK‐ERK1/2 signaling. Baicalein warrants further research as a potential antihypertrophic agent that might be clinically useful to treat cardiac hypertrophy and heart failure. J. Cell. Biochem. 114: 1058–1065, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
为了探讨在人永生化支气管上皮细胞BEP2D细胞中,Smad4分子对 ERK/MAPK通路的作用,我们用RNA干扰的方法分别设计了两对Smad4 siRNA,并使BEP2D细胞中Smad4靶向沉默,用Western印迹分析了细胞内ERK激酶和MEK激酶磷酸化水平的变化.结果发现,当Smad4表达沉默后,ERK激酶磷酸化水平未变,MEK激酶磷酸化水平有所降低;再加TGF-β1诱导后ERK激酶和MEK激酶磷酸化水平均显著降低至基础水平以下.结果表明在BEP2D细胞中,Smad4的缺失抑制TGF-β1对ERK/MAPK通路的活化,故提出TGF β活化ERK/MAPK通路需要Smad4存在的假设.  相似文献   

16.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

17.
MEK/ERK signaling plays a crucial role in a diverse set of cellular functions including cell proliferation, differentiation and survival, and recently has been reported to negatively regulate mouse embryonic stem cell (mESC) self-renewal by antagonizing STAT3 activity. However, its role in human ESCs (hESCs) remains unclear. Here we investigated the functions of MEK/ERK in controlling hESC activity. We demonstrated that MEK/ERK kinases were targets of fibroblast growth factor (FGF) pathway in hESCs. Surprisingly, we found that, in contrast to mESCs, high basal MEK/ERK activity was required for maintaining hESCs in an undifferentiated state. Inhibition of MEK/ERK activity by specific MEK inhibitors PD98059 and U0126, or by RNA interference, rapidly caused the loss of self-renewal capacity. We also showed that MEK/ERK signaling cooperated with phosphoinositide 3-kinase (PI3K)/AKT signaling in maintaining hESC pluripotency. However, MEK/ERK signaling had little or no effect on regulating hESC proliferation and survival, in contrast to PI3K/AKT signaling. Taken together, these findings reveal the unique and crucial role of MEK/ERK signaling in the determination of hESC cell fate and expand our understanding of the molecular mechanisms behind the FGF pathway maintenance of hESC pluripotency. Importantly, these data make evident the striking differences in the control of self-renewal between hESCs and mESCs.  相似文献   

18.
基于细胞Raf/MEK/ERK信号通路与病毒复制的关系,应用Western印迹检测 p-ERK1/2蛋白的表达、用终点滴定法测定病毒增殖量(TCID50),以及观察感染细胞的细胞病变效应(CPE)等,揭示单纯疱疹病毒Ⅱ型(HSV-2)复制与 ERK通路的关系. 结果表明,HSV-2的复制可引起细胞ERK通路的活化;用U0126预先抑制ERK通路的活化,或用特异性siRNA敲减MEK1/2基因的表达可显著地抑制病毒复制.提示ERK信号通路以及MEK1/2蛋白对HSV-2的复制具有重要的作用.该研究对进一步阐明细胞ERK通路各激酶蛋白在病毒复制中的作用机制、寻找抗病毒作用靶标等奠定了良好的基础.  相似文献   

19.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

20.
The role of extracellular signal-regulated kinase (ERK) signaling in skeletal myogenesis has been reported to be both stimulatory and inhibitory. We propose that this discrepancy may arise from the stage-specific, different roles of mitogen-activated protein kinase kinase 1 (MEK1). We found that the phosphorylated MEK1 level of differentiating C2C12 cells was low on day 1 (early-stage) and reached a maximum on days 2–3 (mid-stage). Cells treated at early stage with the MEK-specific inhibitors, PD184352 and U0126, reduced both the MHC protein level and MCK promoter activity, demonstrating that high MEK1 activity at the mid-stage is required for myogenic differentiation. In contrast, treatment with the ERK-specific inhibitors, FR180204 and ERK inhibitor I, had no effect. However, because the sustained overexpression of constitutively active MEK1 inhibits myogenic differentiation, we further analyzed the stage-specific role of MEK1 using the Tet-Off expression system. The results demonstrated that myogenic differentiation was inhibited if active MEK1 expression was induced earlier than day 1 in differentiation condition, but stimulated if induced after that, demonstrating that activated MEK1 plays differential roles depending on activation time. In addition, the induction of active MEK1 at 12 h enhanced the Id2 protein level, while the induction at 36 h resulted in reduction. Thus, MEK1 plays stage-specific and contrary roles in myogenesis, and MEK1 activated at the mid-stage promotes muscle differentiation independent of ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号