首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The existence of clathrin-independent recycling of secretory vesicles has been controversial. By combining patch-clamp capacitance recording, optical methods and specific molecular interventions, we dissect two types of mechanistically different endocytosis in pancreatic β cells, both of which require GTP and dynamin. The fast one is a novel clathrin-independent but actin-dependent endocytosis that is triggered by high cytoplasmic Ca2+ concentration ([Ca2+]i). Large fluorescent dextran (10 nm in diameter) was able to be internalized by this pathway, indicating that it was not likely to be 'kiss and run'. The slow endocytosis is a clathrin-dependent process in which actin plays a complementary role. For the first time, we show that the rate constants for both types of endocytosis exhibit supralinear dependence on increase in [Ca2+]i. Compared with the slow endocytosis, higher [Ca2+]i level was required to fully accelerate the fast one, indicative of distinct Ca2+ sensors for different endocytosis. In the end, we show that physiologically relevant stimulation induces clathrin-independent endocytosis in intact β cells, implying that it may contribute to the normal recycling of secretory vesicles in vivo .  相似文献   

2.
Although bulk endocytosis has been found in a number of neuronal and endocrine cells, the molecular mechanism and physiological function of bulk endocytosis remain elusive. In pancreatic beta cells, we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization. Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca2+ entry and suppressed by the inhibition of dynamin function. Moreover, defects in bulklike endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice, which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability.  相似文献   

3.
dynamin家族是一类鸟苷酸三磷酸酶,是细胞在进行内呑过程中特异的一种蛋白,它参与囊泡从细胞膜上出芽和剪切的过程。从低等生物酵母到所有高等生物都发现了dynamin或者其同源物存在。通过对不同物种的基因组序列分析和基因克隆,发现了三种典型dynamin蛋白和几类同源蛋白。它们在不同的器官或者不同的亚细胞结构上行使着不同的功能。通过对dynamin功能域的研究,发现dynamin的PRD结构域能与很多蛋白相互作用。本文主要总结了dynamin家族蛋白和与之相互作用的蛋白。  相似文献   

4.
Calcineurin is a phosphatase that is activated at the last known stage of mitosis, abscission. Among its many substrates, it dephosphorylates dynamin II during cytokinesis at the midbody of dividing cells. However, dynamin II has several cellular roles including clathrin-mediated endocytosis, centrosome cohesion and cytokinesis. It is not known whether dynamin II phosphorylation plays a role in any of these functions nor have the phosphosites involved in cytokinesis been directly identified. We now report that dynamin II from rat lung is phosphorylated to a low stoichiometry on a single major site, Ser-764, in the proline-rich domain. Phosphorylation on Ser-764 also occurred in asynchronously growing HeLa cells and was greatly increased upon mitotic entry. Tryptic phospho-peptides isolated by TiO2 chromatography revealed only a single phosphosite in mitotic cells. Mitotic phosphorylation was abolished by roscovitine, suggesting the mitotic kinase is cyclin-dependent kinase 1. Cyclin-dependent kinase 1 phosphorylated full length dynamin II and Glutathione-S-Transferase-tagged-dynamin II-proline-rich domain in vitro, and mutation of Ser-764 to alanine reduced proline-rich domain phosphorylation by 80%, supporting that there is only a single major phosphosite. Ser-764 phosphorylation did not affect clathrin-mediated endocytosis or bulk endocytosis using penetratin-based phospho-deficient or phospho-mimetic peptides or following siRNA depletion/rescue experiments. Phospho-dynamin II was enriched at the mitotic centrosome, but this targeting was unaffected by the phospho-deficient or phospho-mimetic peptides. In contrast, the phospho-mimetic peptide displaced endogenous dynamin II, but not calcineurin, from the midbody and induced cytokinesis failure. Therefore, phosphorylation of dynamin II primarily occurs on a single site that regulates cytokinesis downstream of calcineurin, rather than regulating endocytosis or centrosome function.  相似文献   

5.
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.  相似文献   

6.
Glucose-stimulated insulin secretion (GSIS) by pancreatic β cells is regulated by mitochondrial uncoupling protein-2 (UCP2), but opposing phenotypes, GSIS improvement and impairment, have been reported for different Ucp2-ablated mouse models. By measuring mitochondrial bioenergetics in attached INS-1E insulinoma cells with and without UCP2, we show that UCP2 contributes to proton leak and attenuates glucose-induced rises in both respiratory activity and the coupling efficiency of oxidative phosphorylation. Strikingly, the GSIS improvement seen upon UCP2 knockdown in INS-1E cells is annulled completely by the cell-permeative antioxidant MnTMPyP. Consistent with this observation, UCP2 lowers mitochondrial reactive oxygen species at high glucose levels. We conclude that UCP2 plays both regulatory and protective roles in β cells by acutely lowering GSIS and chronically preventing oxidative stress. Our findings thus provide a mechanistic explanation for the apparently discrepant findings in the field.  相似文献   

7.
Endocytosis is critical for many cellular functions. We show that endocytosis of the common gammac cytokine receptor is clathrin independent by using a dominant-negative mutant of Eps15 or RNA interference to knock down clathrin heavy chain. This pathway is synaptojanin independent and requires the GTPase dynamin. In addition, this process requires actin polymerization. To further characterize the function of dynamin in clathrin-independent endocytosis, in particular its connection with the actin cytoskeleton, we focused on dynamin-binding proteins that interact with F-actin. We compared the involvement of these proteins in the clathrin-dependent and -independent pathways. Thus, we observed that intersectin, syndapin, and mAbp1, which are necessary for the uptake of transferrin (Tf), a marker of the clathrin route, are not required for gammac receptor endocytosis. Strikingly, cortactin is needed for both gammac and Tf internalizations. These results reveal the ubiquitous action of cortactin in internalization processes and suggest its role as a linker between actin dynamics and clathrin-dependent and -independent endocytosis.  相似文献   

8.
Dynamin 2 and dynamin 3 are highly expressed in testis. However, their functions in the tissue remain unclear. Considering that dynamin 1, neuron-specific isoform of dynamin, plays a pivotal role in endocytosis, functions of dynamin 2 and dynamin 3 in testis must be essential. Cellular expression and subcellular localization of dynamin 2 and dynamin 3 in testis were investigated. Dynamin 2 and dynamin 3 were highly expressed in germ cells and Sertoli cells, constituents of seminiferous tubules. By immunofluorescence it was revealed that dynamin 2 colocalizes with clathrin both at the plasmamembrane and at Golgi in a cell line of Sertoli cells. Immunoreactivity for dynamin 3, on the other hand, appeared as finer puncta, which did not colocalize with clathrin, suggesting that these two dynamins have distinct functions in Sertoli cells. In the klotho deficient mouse testis, which demonstrates disorder in spermatogenesis, expression of dynamin 2 and dynamin 3 was drastically reduced indicating possible association of these proteins with spermatogenesis.  相似文献   

9.
Diphtheria toxin is believed to enter sensitive mammalian cells via receptor-mediated endocytosis from clathrin-coated pits, while ricin can enter via both clathrin-dependent and clathrin-independent endocytosis. The present study has confirmed this by determining the toxin sensitivity of COS-7y cells which were transiently overexpressing atransdominant negative mutant of dynamin, a GTPase required for the budding of clathrin-coated vesicles from the plasma membrane. Cells overexpressing wild-type dynamin showed normal receptor-mediated endocytosis of transferrin and remained sensitive to both diphtheria toxin and ricin. Cells overexpressing a mutant dynamin defective in GTP binding and hydrolysis were unable to endocytose transferrin and were protected against diphtheria toxin, but they remained completely sensitive to ricin intoxication. Treating nontransfected cells or cells overexpressing mutant dynamin with nystatin caused a redistribution of the caveolae membrane marker protein VIP21-caveolin from the cell surface to intracellular locations, but did not affect their sensitivity to ricin. The redistribution of caveolin seen after nystatin treatment may reflect the disappearance of caveolae. If this is the case, caveolae are not responsible for the endocytosis of ricin. An alternative clathrin-independent route may operate for ricin, since cellular uptake, intracellular transport, and translocation into the cytosol remain unaffected when clathrin-dependent endocytosis is effectively blocked.  相似文献   

10.
Amphiphysin (Amph) is a src homology 3 domain-containing protein that has been implicated in synaptic vesicle endocytosis as a result of its interaction with dynamin. In a screen for novel members of the amphiphysin family, we identified Amph2, an isoform 49% identical to the previously characterized Amph1 protein. The subcellular distribution of this isoform parallels Amph1, both being enriched in nerve terminals. Like Amph1, a role in endocytosis at the nerve terminal is supported by the rapid dephosphorylation of Amph2 on depolarization. Importantly, the two isoforms can be coimmunoprecipitated from the brain as an equimolar complex, suggesting that the two isoforms act in concert. As determined by cross-linking of brain extracts, the Amph1–Amph2 complex is a 220- to 250-kDa heterodimer. COS cells transfected with either Amph1 or Amph2 show greatly reduced transferrin uptake, but coexpression of the two proteins rescues this defect, supporting a role for the heterodimer in clathrin-mediated endocytosis. Although the src homology 3 domains of both isoforms interact with dynamin, the heterodimer can associate with multiple dynamin molecules in vitro and activates dynamin’s GTPase activity. We propose that it is an amphiphysin heterodimer that drives the recruitment of dynamin to clathrin-coated pits in endocytosing nerve terminals.  相似文献   

11.
Mammalian actin binding protein 1 (mAbp1, also called SH3P7/Hip55) is structurally and functionally related to yeast Abp1 and to cortactin, both of which have been implicated in endocytotic processes. mAbp1 associates through its SH3 domain with dynamin, a large GTPase essential for vesicle fission. To clarify the function of mAbp1, we specifically knocked down its expression in human embryonic kidney 293T cells, using RNA interference (RNAi). Co-transfection of a short interfering RNA (siRNA) together with a plasmid coding for a surface marker, followed by purification of transfected cells, enabled us to obtain a cell population having up to 90% inhibition of mAbp1 expression. In mAbp1-knocked down cells, transferrin (Tf) receptor endocytosis was significantly inhibited and intracellular distribution of the early endosomal compartment was modified. In contrast, in these cells actin and microtubule filaments appeared normal, and formation of lamellipodia induced by active Rac was not inhibited. This study provides definitive evidence that mAbp1 is indispensable for receptor-mediated endocytosis.  相似文献   

12.
Previous studies provide evidence for an endocytic mechanism in mammalian cells that is distinct from both clathrin-coated pits and caveolae, and is not inhibited by overexpression of GTPase-null dynamin mutants. This mechanism, however, has been defined largely in these negative terms. We applied a ferro-fluid-based purification of endosomes to identify endosomal proteins. One of the proteins identified in this way was flotillin-1 (also called reggie-2). Here, we show that flotillin-1 resides in punctate structures within the plasma membrane and in a specific population of endocytic intermediates. These intermediates accumulate both glycosylphosphatidylinositol (GPI)-linked proteins and cholera toxin B subunit. Endocytosis in flotillin-1-containing intermediates is clathrin-independent. Total internal reflection microscopy and immuno-electron microscopy revealed that flotillin-1-containing regions of the plasma membrane seem to bud into the cell, and are distinct from clathrin-coated pits and caveolin-1-positive caveolae. Flotillin-1 small interfering RNA (siRNA) inhibited both clathrin-independent uptake of cholera toxin and endocytosis of a GPI-linked protein. We propose that flotillin-1 is one determinant of a clathrin-independent endocytic pathway in mammalian cells.  相似文献   

13.
Endocytosis of tyrosine kinase receptors can influence both the duration and the specificity of the signal emitted. We have investigated the mechanisms of internalization of fibroblast growth factor receptor 3 (FGFR3) and compared it to that of FGFR1 which is internalized predominantly through clathrin-mediated endocytosis. Interestingly, we observed that FGFR3 was internalized at a slower rate than FGFR1 indicating that it may use a different endocytic mechanism than FGFR1. Indeed, after depletion of cells for clathrin, internalization of FGFR3 was only partly inhibited while endocytosis of FGFR1 was almost completely abolished. Similarly, expression of dominant negative mutants of dynamin resulted in partial inhibition of the endocytosis of FGFR3 whereas internalization of FGFR1 was blocked. Interfering with proposed regulators of clathrin-independent endocytosis such as Arf6, flotillin 1 and 2 and Cdc42 did not affect the endocytosis of FGFR1 or FGFR3. Furthermore, depletion of clathrin decreased the degradation of FGFR1 resulting in sustained signalling. In the case of FGFR3, both the degradation and the signalling were only slightly affected by clathrin depletion. The data indicate that clathrin-mediated endocytosis is required for efficient internalization and downregulation of FGFR1 while FGFR3, however, is internalized by both clathrin-dependent and clathrin-independent mechanisms.  相似文献   

14.
15.
Dynamin proteins have been implicated in many aspects of endocytosis, including clathrin-mediated endocytosis, internalization of caveolae, synaptic vesicle recycling, and, more recently, vesicular trafficking to and from the Golgi complex. To provide further insight into the function(s) of dynamin in neuroendocrine cells, we have examined its intracellular distribution in cultured chromaffin cells by subcellular fractionation, immunoreplica analysis, and confocal immunofluorescence. We found that dynamin, presumably the dynamin-2 isoform, is associated specifically with the membrane of purified secretory chromaffin granules. Oligomerization state analysis by sucrose density velocity gradients indicated that the granule-associated dynamin is in a monomeric form. Immunoprecipitation experiments coupled to double-labeling immunofluorescence cytochemistry revealed that the granular dynamin is associated with a syntaxin component that is not involved in the granule-bound SNARE complex. The possibility that dynamin participates in the coupling of the exocytotic and endocytotic reaction through the building of a granular membrane subset of proteins is discussed.  相似文献   

16.
Previously, we reported that expression of a dominant-interfering neuronal-specific dynamin 1 (K44A/dynamin 1) inhibited the plasma membrane internalization of GLUT-4 in 3T3L1 adipocytes (15). To investigate the role of the ubiquitously expressed isoform of dynamin, dynamin 2, on adipocyte GLUT-4 internalization, and to determine whether dynamin splice variants have functional specificity, we expressed each of the four dynamin 2 isoforms (aa, ab, ba, and bb) as either wild-type proteins or GTPase-defective mutants. When expressed as enhanced green fluorescent protein (EGFP) fusions, these isoforms were found to have overlapping subcellular distributions being localized throughout the cell cytoplasm, on punctate vesicles and in a perinuclear compartment. This distribution was qualitatively similar to that of endogenous dynamin 2 and overlapped with GLUT-4 in the basal state. Expression of wild-type dynamin 2 isoforms had no effect on the basal or insulin-stimulated distribution of GLUT-4; however, expression of the dominant-interfering dynamin 2 mutants inhibited GLUT-4 endocytosis. These data demonstrate that dynamin 2 is required for GLUT-4 endocytosis in 3T3L1 adipocytes and suggest that, relative to GLUT-4 trafficking, the dynamin 2 splice variants have overlapping functions and are probably not responsible for mediating distinct GLUT-4 budding events.  相似文献   

17.
Dynamin plays a key role in the scission event common to various types of endocytosis. We demonstrate that the pleckstrin homology (PH) domain of dynamin-1 is critical in the process of rapid endocytosis (RE) in chromaffin cells. Introduction of this isolated PH domain into cells at concentrations as low as 1 microM completely suppressed RE. PH domains from other proteins, including that from the closely related dynamin-2, were ineffective as inhibitors, even at high concentrations. Mutational studies indicated that a pair of isoform-specific amino acids, located in a variable loop between the first two beta-strands, accounted for the differential effect of the two dynamin PH domains. Switching these amino acids in the dynamin-2 PH domain to the equivalent residues in dynamin-1 (SL-->GI) generated a molecule that blocked RE. Thus, the PH domain of dynamin-1 is essential for RE and exhibits a precise molecular selectivity. As chromaffin cells express both dynamin-1 and -2, we speculate that different isoforms of dynamin may regulate distinct endocytotic processes and that the PH domain contributes to this specificity.  相似文献   

18.
In polarized hepatocytes, the predominant route for apical resident proteins to reach the apical bile canalicular membrane is transcytosis. Apical proteins are first sorted to the basolateral membrane from which they are internalized and transported to the opposite surface. We have noted previously that transmembrane proteins and GPI-anchored proteins reach the apical bile canaliculi at very different rates. Here, we investigated whether these differences may be explained by the use of distinct endocytic mechanisms. We show that endocytosis of both classes of proteins at the basolateral membrane of polarized hepatic cells is dynamin dependent. However, internalization of transmembrane proteins is clathrin mediated, whereas endocytosis of GPI-anchored proteins does not require clathrin. Further analysis of basolateral endocytosis of GPI-anchored proteins showed that caveolin, as well as the small GTPase cdc42 were dispensable. Alternatively, internalized GPI-anchored proteins colocalized with flotillin-2–positive vesicles, and down-expression of flotillin-2 inhibited endocytosis of GPI-anchored proteins. These results show that basolateral endocytosis of GPI-anchored proteins in hepatic cells occurs via a clathrin-independent flotillin-dependent pathway. The use of distinct endocytic pathways may explain, at least in part, the different rates of transcytosis between transmembrane and GPI-anchored proteins.  相似文献   

19.
The Cbl- and ubiquitin-interacting protein T-cell ubiquitin ligand (TULA) has been demonstrated to inhibit endocytosis and downregulation of ligand-activated EGF receptor (EGFR) by impairing Cbl-induced ubiquitination. We presently report that TULA additionally inhibited clathrin-dependent endocytosis in general, as both uptake of transferrin (Tf) and low-density lipoprotein (LDL) was inhibited. Additionally, endocytosis of the raft proteins CD59 and major histocompatibility complex class I (MHC-I), which we demonstrate were mainly endocytosed clathrin-independently, but dynamin-dependently, was blocked in cells overexpressing TULA. By contrast, the uptake of ricin, which is mainly endocytosed clathrin- and dynamin-independently, was not affected by overexpressed TULA. Consistently, TULA and dynamin co-immunoprecipitated and colocalized intracellularly, and upon overexpression of dynamin the TULA-mediated inhibitory effect on endocytosis of Tf, LDL, CD59 and MHC-I was counteracted. Overexpressed dynamin did not restore ubiquitination of the EGFR, and consistently dynamin did not rescue endocytosis of the EGFR in cells overexpressing TULA. We conclude that TULA inhibits both clathrin-dependent and clathrin-independent endocytic pathways by functionally sequestering dynamin via the SH3 domain of TULA binding proline-rich sequences in dynamin.  相似文献   

20.
A role for dynamin in clathrin-mediated endocytosis is now well established. However, mammals express three closely related, tissue-specific dynamin isoforms, each with multiple splice variants. Thus, an important question is whether these isoforms and splice variants function in vesicle formation from distinct intracellular organelles. There are conflicting data as to a role for dynamin-2 in vesicle budding from the TGN. To resolve this issue, we compared the effects of overexpression of dominant-negative mutants of dynamin-1 (the neuronal isoform) and dynamin-2 (the ubiquitously expressed isoform) on endocytic and biosynthetic membrane trafficking in HeLa cells and polarized MDCK cells. Both dyn1(K44A) and dyn2(K44A) were potent inhibitors of receptor-mediated endocytosis; however neither mutant directly affected other membrane trafficking events, including transport mediated by four distinct classes of vesicles budding from the TGN. Dyn2(K44A) more potently inhibited receptor-mediated endocytosis than dyn1(K44A) in HeLa cells and at the basolateral surface of MDCK cells. In contrast, dyn1(K44A) more potently inhibited endocytosis at the apical surface of MDCK cells. The two dynamin isoforms have redundant functions in endocytic vesicle formation, but can be targeted to and function differentially at subdomains of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号