首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Three patterns of target-neighbor plant defoliation were imposed on a late-seral, perennial, C4-grass, Bouteloua curtipendula, in three long-term grazing regimes to determine the influence of selective defoliation on competitive interactions and species replacement in a semiarid savanna on the Edwards Plateau, Texas, USA. Short-term (3-yr) target plant defoliation did not significantly affect either tiller or plant responses in any of the three grazing regimes. Neighbor plant defoliation, either alone or in combination with target plants, produced a significant defoliation interaction with time for tiller number and basal area per plant, but not for tiller recruitment or mortality. The minimal effect of selective defoliation on the intensity of competitive interactions in this semiarid community indicates that selective grazing has a less definitive role in mediating herbivore-induced species replacement than it does in mesic grasslands and savannas. This interpretation is discussed within the context of long-term (45-yr) change in herbaceous vegetation associated with grazing in this community. Cumulative tiller recruitment in the intensively grazed regime was only 44% of that in the ungrazed regime because of greater plant mortality and fewer surviving plants that recruited tillers. Target plant mortality (50%) only occurred in the intensively grazed regime and the proportion of target plants that initiated tillers decreased by 70, 48 and 32% in the ungrazed, moderately and intensively grazed regimes, respectively, during the final two years of the investigation. The decrease in cumulative tiller recruitment in all grazing regimes was probably mediated by a drought-induced increase in median tiller age the second year of the study. However, tiller per tiller recruitment rate among plants that recruited at least one tiller remained relatively constant among grazing regimes and years. Intensive, long-term grazing has modified the population structure of this late-seral perennial grass to the extent that population responses to both herbivory and periodic drought have been altered in comparison with those of ungrazed and moderately grazed populations. Ecological consequences of a herbivore-induced transition in population structure may be to minimize the effect of selective herbivory on competitive interactions and to function as an avoidance mechanism to reduce the probability of localized population extinction in response to intensive long-term herbivory.  相似文献   

2.
Three semi‐arid savanna grasses in Botswana (Stipagrostis uniplumis, Eragrostis lehmanniana, and Aristida stipitata) were sampled to quantify their belowground bud banks during the dormant season and to estimate their relative allocation to vegetative and sexual reproduction. Bud banks of these African perennial caespitose grasses were also compared with four perennial caespitose grasses of semi‐arid North American grasslands. The three African grasses each maintained approximately two buds per tiller and showed a high percentage (88–99%) of tillers producing seed. Only E. lehmanniana produced new aerial tillers from axillary buds at elevated nodes on the stem as well as from the belowground bud bank. Compared with species of North American grasslands, these African grasses produced fewer belowground buds but showed a much higher percentage of tillers producing seed. These patterns indicate relatively greater belowground meristem limitation, lower allocation to vegetative reproduction (tillering) and higher allocation to seed reproduction in these African grasses, although studies of more species are needed to assess the generality of this pattern. The management of savannas in ways that favour the maintenance of a reserve population of belowground buds may increase the ability of grasses to respond to pulses of resource availability, increase their compensatory growth capacity following grazing or drought, and decrease the invasibility of these plant communities by exotic species, whereas maintaining allocation to sexual reproduction may be important for conserving genetic variation and enhancing their capacity to adapt to environmental change.  相似文献   

3.
Abstract. The dynamics of tillers in natural populations of three cohabiting perennial grass species, Agrostis stolonifera, Festuca rubra and Poa irrigata (= Poa pratensis ssp. irrigata) were studied for five years in a Baltic seashore meadow. The process of tiller population maintenance was very dynamic. Both birth and death rates of tillers were high, particularly in A stolonifera, and the turnover rate of the populations was high. Recruitment was mainly by vegetative tillers, produced continuously throughout the growing season. The proportion of flowering tillers was low, but varied between years. Considerable year-to-year variation was also found in birth and death rates. Despite this between-year variation and the differences found between species in flowering frequency, pattern of survivorship and tiller longevity, population sizes of the species remained relatively constant.  相似文献   

4.
The caespitose grasses Agropyron spicatum and Agropyron desertorumexhibit a striking difference in tillering response followingexperimental clipping treatment, with plants of A. desertorumproducing up to 18 times more tillers. The two species are similarin many aspects of their phenology and physiology. Previousexamination of current photosynthate production and levels ofstored carbohydrates indicate only slight differences betweenthe species. The possible role of three anatomical/morphologicalconstraints in controlling tillering was examined. No evidencefor such constraints was found. A basal cluster of buds is presenton the parent tillers. The mean bud number per tiller was similarfor both species and the range (3–9) was identical. Nearlyall of the bud apical meristems appeared anatomically viablethroughout the growing season and vascular development occurredto within 250 to 490 µm of the various bud apices of bothspecies. Both normal fall tillers and summer tillers producedunder clipping treatment originated from the largest, most distalbuds of the basal cluster of buds. However, precocious, morphologicallydistinctive, second-order tillers occasionally grew out fromthe smaller, most basal buds of some elongating fall tillers. Agropyron spicatum, Agropyron desertorum, bluebunch wheatgrass, crested wheatgrass, bud, tiller, tillering ability, meristematic potential, vascular development, regrowth  相似文献   

5.
HUME  D.E. 《Annals of botany》1991,67(2):111-121
A detailed morphological study of three prairie grass cultivars(Bromus willdenowii Kunth) was conducted under ‘vegetative’and ‘reproductive’ growth conditions (short andlong photoperiods) and at different temperatures. Perennialryegrass (Lolium perenne L.) and Westerwolds ryegrass (Loliummuhiflorum Lam.) were compared during vegetative growth. Prairie grass had higher leaf appearance rates (leaves per tillerper day) and lower site filling (tillers per tiller per leafappearance interval) than the ryegrass species. Tillering rates(tillers per tiller per day) were also lower, except under vegetativeconditions at 4C. Low tiller number in prairie grass was notdue to lack of tiller sites but a result of poor filling ofthese sites. Lower site filling occurred because of increaseddelays in appearance of the youngest axillary tiller and lackof axillary tillers emerging from basal tiller buds. In prairiegrass, no tillers came from coleoptile buds while only occasionallydid prophyll buds develop tillers. Low tiller number in prairiegrass was compensated for by greater tiller weight. Prairiegrass had more live leaves per tiller, greater area per leafand a high leaf area per plant. Considerable variation between cultivars was found in prairiegrass. The cultivar ‘Bellegarde’ had high leaf appearance,large leaves and rapid reproductive development, but had lowlevels of site filling, tillering rate, final tiller numberand herbage quality during reproductive growth. ‘Primabel’tended to have the opposite levels for these parameters, while‘Grasslands Matua’ was intermediate and possiblyprovided the best balance of all plant parameters. prairie grass, Bromus willdenowii Kunth, perennial ryegrass, Lolium perenne L., Westerwolds ryegrass, Lolium multiflorum Lam., temperature, photoperiod, leaf appearance, leaf area, tillering, site filling, tillering sites, yield  相似文献   

6.
Summary Responses to clipping and bison grazing in different environmental contexts were examined in two perennial grass species, Andropogon gerardii and Panicum virgatum, on the Konza Prairie in northeastern Kansas. Grazed tillers had lower relative growth rates (RGR) than clipped tillers following defoliation but this difference was transient and final biomass was not affected by mode of defoliation. Grazed tillers of both species had higher RGR throughout the season than ungrazed tillers, resulting in exact compensation for tissue lost to defoliation. However, A. gerardii tillers which had been grazed repeatedly the previous year (1988) had reduced relative growth rates, tiller biomass and tiller survival in 1989. This suggests that the short-term increase in aboveground relative growth rates after defoliation had a cost to future plant growth and tiller survival.In general, the two species had similar responses to defoliation but their responses were altered differentially by fire. The increase in RGR following defoliation of A. gerardii was relatively greater on unburned than burned prairie, and was influenced by topographic position. P. virgatum responses to defoliation were similar in burned and unburned prairie. Thus grazing, fire, and topographical position all interact to influence tiller growth dynamics and these two species respond differently to the fire and grazing interaction. In addition, fire may interact with grazing pattern to influence a plants' grazing history and thus its long-term performance.  相似文献   

7.
Because most shoot recruitment in perennial grasses occurs from belowground axillary buds, bud dynamics determine plant population dynamics and meristem limitation to population growth. Therefore, grassland vegetation responses to environmental change or disturbance may be influenced by interspecific differences in bud banks and the patterns and environmental controls of bud development and demography. We examined bud bank dynamics in Andropogon gerardii and Dichanthelium oligosanthes in tallgrass prairie by enumerating and classifying buds throughout 15?months to determine whether grass buds live for multiple years and accumulate; whether bud natality, dormancy and outgrowth are synchronous or variable; and whether bud bank dynamics differ between these co-occurring species. Andropogon gerardii (a C4 species) maintained a larger dormant bud bank, showed synchrony in bud development and transition to tiller, and its buds lived for multiple years. Thus, multiple previous years?? bud cohorts contributed to recruitment. By contrast, D. oligosanthes (a C3 species) maintained a smaller dormant bud bank, had asynchronous bud development with active buds present year-round, and its buds lived for 1?year. Buds played different roles in the dynamics of each species, allowing A. gerardii to over-winter and recruit new spring tillers and D. oligosanthes to survive and recruit new tillers following summer dormancy. These differences in bud bank age structure, phenology, and dynamics between these species suggest greater demographic buffering and time-lag effects in A. gerardii populations. Interspecific differences in bud bank structure and dynamics may explain and help predict grassland responses to environmental change.  相似文献   

8.
Summary The annual replacement of tillers of Agropyron desertorum (Fisch. ex Link) Schult., a grazing-tolerant, Eurasian tussock grass, was examined in the field following cattle grazing. Heavy grazing before internode (culm) elongation seldom affected tiller replacement. Heavy grazing during or after internode elongation, which elevates apical meristems, increased overwinter mortality of fall-produced tillers and reduced the number and heights of these replacement tillers. Unexpectedly, tussocks grazed twice within the spring growing season tended to have lower overwinter tiller mortality, greater tiller replacement, and larger replacement tillers than tussocks grazed only once in late spring. These responses of twice-grazed tussocks, however, were still less than those of ungrazed tussocks or tussocks grazed moderately in early spring. The presence of ungrazed tillers on partially grazed tussoks did not increase the replacement of associated grazed tillers relative to tillers on uniformly grazed plants. This result indicates that resource sharing among tillers, if present, is short-lived or ecologically unimportant in this species. Although A. desertorum is considered grazing-tolerant, tiller replacement on heavily grazed tussocks, particularly those grazed during or after internode elongation when apical meristems were removed, was usually inadequate for tussock maintenance. These observations at the tiller (ramet) level of organization in individual tussocks (genet) may explain the often noted reduction in stand (population) longevity with consistent heavy grazing.  相似文献   

9.
To isolate genes that negatively regulate cell growth, we constructed a galactose-inducible expression library with partially digested Saccharomyces cerevisiae genomic DNA fragments inserted downstream of the GAL10 promoter. In all, 240 000 yeast transformants were screened for lethality on galactose medium. From 17 such transformants identified, 16 nonoverlapping DNA sequences were obtained. Restriction mapping and determination of DNA sequences adjacent to the GAL10 promoter indicated that the inserts encoded part or all of the URA2, RBP1, TPK3, SAC7, BOI1, and BNI1 genes, and also open reading frames (ORFs) from chromosomes IV, V, IX, XI, and XIII. Some of the identified sequences lacked the amino-terminal sequences of the ORFs, suggesting that truncated forms of the proteins might be necessary for growth inhibition. The sequence of the pGA108 insert was highly homologous to the telomeric X-element and contained an ARS consensus sequence, suggesting a possible growth inhibitory effect of an RNA molecule. Overexpression of the BNI1ΔN and BOI1ΔN genes, which lacked amino-terminal sequences, was associated with phenotypes similar to those of mutants defective in bud formation. Overexpression of the GIN4 and GIN12 sequences induced elongated buds and a G2/M arrest-like phenotype, respectively. The phenotypes induced by the overexpression of our cloned sequences could result from either a dominant-positive or a dominant-negative effect and, unexpectedly, in one case from an effect of an RNA. Received: 3 June 1996 / Accepted: 1 October 1996  相似文献   

10.
We report on predation on adult females of the parasitoids Aphytis aonidiae and A. vandenboschi (Hymenoptera: Aphelinidae) foraging in the field. During 89.6 h of observation, we witnessed 18 encounters with predators, 6 of which resulted in parasitoid capture. Three classes of generalist predators attacked Aphytis: spiders (unidentified Salticidae and Thomisidae), workers of the Argentine ant, Linepithema humile, and nymphs of the assassin bug Zelus renardii (Hemiptera: Reduviidae). Although observations were conducted during most months of the year, encounters with predators occurred only during September, October and November. During these months, encounters with predators occurred on average every 3.2 h of observation, with one in three encounters resulting in parasitoid capture. Peaks in predation coincided with population peaks of A. aonidiae, but were unrelated to population dynamics of any of the predators. We compare these results with previously published laboratory studies on longevity of Aphytis parasitoids, and conclude that predation pressure has the potential to severely limit parasitoid fitness in the field. Received: 1 April 1996 / Accepted: 27 November 1996  相似文献   

11.
Plant responses to herbivory are complex. In grasses, relative growth rate (RGR), seed, and vegetative reproduction, resource allocation, and architecture vary differentially and often nonlinearly with grazing intensity. High grazing tolerance may be achieved through compensatory photosynthesis and leaf growth, or through demographic mechanisms such as activation of a belowground dormant bud bank. This study assessed the relationship between grazing frequency and responses of Schizachyrium scoparium (little bluestem) in a tallgrass prairie, and examined the roles of tiller growth, reproduction, and bud (meristem) populations in its persistence under grazing. Genets were subjected to varying simulated grazing frequencies for a period of 2 years. Strong differential responses were observed among plant traits. RGR, biomass, and flowering showed strong nonlinear reductions in response to increasing clipping frequency, with no evidence of threshold effects. However, meristem density was unaffected, and plants maintained a large bud bank across all clipping treatments. Tiller natality decreased initially, but increased with >4 clippings, suggesting that declines in tiller RGR are partially offset by increasing tiller natality, and that variation in genet size is driven more by demography than by variation in individual tiller growth. Increased grazing frequency also resulted in differential activation of buds at different positions (emerging within vs. outside the subtending leaf sheath), explaining the shift to a more prostrate growth form observed in many caespitose grasses under persistent grazing. Thus, although this grass species lacks the capacity for compensatory foliage re-growth, the maintenance of a large dormant bud bank and the differential activation of buds in different positions contribute to its grazing tolerance and avoidance, respectively, and its long-term persistence in grazed grasslands.  相似文献   

12.
Tamarix ramosissima (Tamaricaceae) is a woody phreatophyte that has invaded thousands of hectares of floodplain habitat in the southwestern U.S. In this study, we examined the response of gas exchange and stem sap flow of Tamarix and three co-occurring native phreatophytes (Pluchea sericea (Asteraceae), Prosopis pubescens (Fabaceae) and Salix exigua (Salicaceae)) to drought conditions in an early successional floodplain community in the Mojave Desert of southern Nevada. In an analysis of a size/age series of each species across the whole floodplain (both mature and successional stands), stem growth rate was lowest for Tamarix. However, along the same successional chronosequence, Tamarix came to dominate the 50+ year old stands with dense thickets of high stem density. Xylem sap flow, when expressed on a sapwood area basis, was highest in Tamarix under early drought conditions, but comparable between the four species toward the end of the summer dry season. Multivariate analysis of the gas exchange data indicated that the four species differentiated based on water use under early drought conditions and separated based on plant water potential and leaf temperature (indices of drought effects) at the end of the summer dry season. This analysis suggests that the invasive Tamarix is the most drought tolerant of the four species, whereas Salix transpires the most water per unit leaf surface area and is the least tolerant of seasonal water stress. Therefore, Salix appears to be well adapted to early successional communities. However, as floodplains in this arid region become more desiccated with age, Tamarix assumes greater dominance due to its superior drought tolerance relative to native phreatophytes and its ability to produce high density stands and high leaf area. Received: 8 August 1996 / Accepted: 29 January 1997  相似文献   

13.
In this study, sun leaf carbon isotope composition (δ13C) of two co-occurring woody Mediterranean species (Quercus pubescens Willd., a deciduous oak, and Q. ilex L., an evergreen one) was investigated on four sites with different water availability. The total range of δ13C values was 4.4 and 3.1‰ for Q. pubescens and Q. ilex respectively. The intra-site variability was about 3‰. Total mean per species was equal. There were significant differences among sites, but at each site means of δ13C were not significantly different between species. A simple physiological model predicts no difference in intrinsic water-use efficiency (WUEi) between evergreen and deciduous oaks. The relationship between site means of δ13C and water parameters suggests that there is a leaf functional adjustment with respect to available water resource. No correlation was found between δ13C and the contents of any mass-based biochemical constituent. Nevertheless there was a significant correlation between δ13C and leaf mass per area of Q. ilex. For both species, there is also a positive correlation between leaf δ13C and individual crown area, i.e. a structural characteristic at tree level. Causal relations between δ13C and plant-environment interactions are discussed. Received: 25 October 1996 / Accepted: 19 January 1997  相似文献   

14.
In this study we evaluated (1) the combined effects of simulated defoliation and below-ground herbivory (BGH) on the biomass and nitrogen content of tillers and roots of the bunchgrass Muhlenbergia quadridentata and (2) the effect of defoliation on the survival of third-instar root-feeder larvae of Phyllophaga sp. The experiment was performed in a pine forest area at an altitude of 3200 m above sea level. The grass and the root-feeder species were native and dominant in the understory and in the macroarthropod root-feeder communities, respectively. Plants were established in pots in the field and were subjected to the following treatments in a factorial design: simulated defoliation (three levels) and BGH (with or without root-feeder larvae) with ten replicates per treatment. Plants were defoliated three times at 2-month intervals. The interaction between defoliation and root herbivory was significant for all components of plant biomass. In every case, light defoliation with BGH decreased live above-ground, root and total plant biomass, and the number of live tillers by more than 50% with respect to the same defoliation level without root-feeders. Plants apparently did not compensate for the carbon drain by root-feeders when a high proportion of older leaves were not removed by defoliation. Plants under heavy defoliation were not affected by the presence of root-feeders and showed a greater live/dead above-ground biomass ratio than lightly defoliated and control plants. Defoliation and BGH did not change tiller and root N concentrations but root herbivores did decrease live-tiller N content in lightly defoliated plants. Root-feeders but not defoliation decreased the root/shoot ratio by 40% and the live/dead above-ground biomass ratio by 45% through increased tiller mortality. Survivorship and final biomass of Phyllophaga sp. larvae were not affected by defoliation treatments during the 6-month study period. Received: 17 May 1996 / Accepted: 1 November 1996  相似文献   

15.
16.
In some species of hagfish, the phenomenon of chromosome elimination occurs during embryogenesis. However, only two repetitive DNA families are known to be represented in chromosomes that are eliminated from somatic cells of the Japanese hagfish Eptatretus okinoseanus. Using molecular analyses, another germ line-restricted, highly repetitive DNA family has been detected in another Japanese hagfish, Paramyxine atami. The repeat unit of this family, which is 83 bp long, has been designated “EEPa1”, for Eliminated Element of P. atami 1. DNA filter hybridization using EEPa1 as a probe revealed that this family is shared among several species and is conserved in the germline DNA. Although eliminated, repetitive DNA that is shared interspecifically has not been reported in hagfish species, cases of chromatin diminution and chromosome elimination processes have been described previously in other organisms.The patterns and intensities of hybridization signals suggest that members of the repetitive DNA family defined by EEPa1 have undergone concerted molecular evolution. Received: 7 January 1997 / Accepted: 13 May 1997  相似文献   

17.
18.
Brassica oleracea L. is highly polymorphic and includes varieties which exhibit a headed phenotype (a large preinflorescence): the curd of cauliflower and `romanesco' (var. botrytis), and the spear of broccoli (var. italica). This headed phenotype results from highly iterative patterns of activity at the primary meristems. Differences in the morphology of curds and spears are accounted for by three quantitative variables: the rate of production of branch primordia on the flanks of the apical meristems (RPP); the number of branch primordia produced before the first formed begin producing their own branch primordia (the iteration interval, ITI); and the duration of the preinflorescence stage (before production of flower primordia). Relatively stable iteration parameters (RPP and ITI) during curd development lead to the production of semi-spherical curds with a smooth surface in cauliflower and broccoli, whereas in `romanesco' RPP and ITI increase throughout curd development, inducing a pyramidal curd with an angular surface. A relatively long preinflorescence stage in cauliflower and `romanesco' results in the curd surface being composed largely of branch primordia, whereas in broccoli this stage is short and the spear surface is made up of flower buds. Simplified growth models for these three headed types are presented. The implications for the genetic control of the B. oleracea L. headed phenotype and the relationships between shoot apical meristem size, phyllotaxis and curd/spear morphology are discussed. Received: 11 September 1997 / Accepted: 12 November 1997  相似文献   

19.
OFIR  M. 《Annals of botany》1975,39(2):213-217
The tillering phase in Hordeum bulbosum L. is terminated whenthe newly-formed axillary buds no longer emerge as tillers,but differentiate into dormant regeneration buds. The patternof development of the axillary buds differs during the tilleringphase and the post-tillering phase. During the former, accumulationof leaf primordia corresponds to the age of the bud, i.e., leafnumber per bud increases basipetally along the shoot. Duringthe post-tillering phase, leaf number per bud decreases basipetallyfrom the base of the future bulb internode. This transitionis brought about by an acceleration in the rate of accumulationof leaf primordia which is more sustained in the buds situatedcloser to the base of the bulb internode. These positional differencesin the morphogenesis of the regeneration buds are reflectedin their physiological responses during the relaxation of dormancyand activation of the buds.  相似文献   

20.
D. Adams  A. E. Douglas 《Oecologia》1997,110(4):528-532
To explore the effect of rearing-plant species on the contribution of the symbiotic bacterium, Buchnera, to aphid performance, larvae of Aphis fabae that contained the bacteria (symbiotic aphids) and larvae experimentally deprived of the bacteria (aposymbiotic aphids) were reared on 16 plant species. Mortality of aphids was low on most plant species. The relative growth rate (RGR) of the larvae varied with plant species, and was generally depressed by elimination of the bacteria; the mean values of RGR varied between 0 and 0.29 μg μg−1 day−1 for symbiotic aphids and 0 and 0.17 μg μg−1 day−1 for aposymbiotic aphids. The extent to which RGR was depressed by aposymbiosis varied significantly between plant species, suggesting that aphid host plant may influence the contribution of the bacteria to plant utilisation. It is proposed that the bacteria may be particularly important on plants with phloem sap of high amino acid content of low quality, i.e. low concentrations of essential amino acids. Received: 18 August 1996 / Accepted: 13 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号