首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alternatively spliced 290-nucleotide NS2-specific exon of the parvovirus minute virus of mice (MVM), which is flanked by a large intron upstream and a small intron downstream, constitutively appears both in the R1 mRNA as part of a large 5′-terminal exon (where it is translated in open reading frame 3 [ORF3]), and in the R2 mRNA as an internal exon (where it is translated in ORF2). We have identified a novel bipartite exon enhancer element, composed of CA-rich and purine-rich elements within the 5′ and 3′ regions of the exon, respectively, that is required to include NS2-specific exon sequences in mature spliced mRNA in vivo. These two compositionally different enhancer elements are somewhat redundant in function: either element alone can at least partially support exon inclusion. They are also interchangeable: either element can function at either position. Either a strong 3′ splice site upstream (i.e., the exon 5′ terminus) or a strong 5′ splice site downstream (i.e., the exon 3′ terminus) is sufficient to prevent skipping of the NS2-specific exon, and a functional upstream 3′ splice site is required for inclusion of the NS2-specific exon as an internal exon into the mature, doubly spliced R2 mRNA. The bipartite enhancer functionally strengthens these termini: the requirement for both the CA-rich and purine-rich elements can be overcome by improvements to the polypyrimidine tract of the upstream intron 3′ splice site, and the purine-rich element also supports exon inclusion mediated through the downstream 5′ splice sites. In summary, a suboptimal large-intron polypyrimidine tract, sequences within the downstream small intron, and a novel bipartite exonic enhancer operate together to yield the balanced levels of R1 and R2 observed in vivo. We suggest that the unusual bipartite exonic enhancer functions to mediate proper levels of inclusion of the NS2-specific exon in both singly spliced R1 and doubly spliced R2.  相似文献   

2.
How premature translation termination codons (PTCs) mediate effects on nuclear RNA processing is unclear. Here we show that a PTC at nucleotide (nt) 385 in the NS1/2 shared exon of P4-generated pre-mRNAs of the autonomous parvovirus minute virus of mice caused a decrease in the accumulated levels of doubly spliced R2 relative to singly spliced R1, although the total accumulated levels of R1 plus R2 remained the same. The effect of this PTC was evident within nuclear RNA, was mediated by a PTC and not a missense transversion mutation at this position, and could be suppressed by improvement of the large intron splice sites and by mutation of the AUG that initiated translation of R1 and R2. In contrast to the PTC at nt 385, the reading frame-dependent effect of the PTC at nt 2018 depended neither on the initiating AUG nor the normal termination codon for NS2; however, it could be suppressed by a single nucleotide deletion mutation in the upstream NS1/2 common exon that shifted the 2018 PTC out of the NS2 open reading frame. This suggested that there was recognition and communication of reading frame between exons on a pre-mRNA in the nucleus prior to or concomitant with splicing.  相似文献   

3.
Premature translation termination codon (PTC)-mediated effects on nuclear RNA processing have been shown to be associated with a number of human genetic diseases; however, how these PTCs mediate such effects in the nucleus is unclear. A PTC at nucleotide (nt) 2018 that lies adjacent to the 5' element of a bipartite exon splicing enhancer within the NS2-specific exon of minute virus of mice P4 promoter-generated pre-mRNA caused a decrease in the accumulated levels of P4-generated R2 mRNA relative to P4-generated R1 mRNA, although the total accumulated levels of P4 product remained the same. This effect was seen in nuclear RNA and was independent of RNA stability. The 5' and 3' elements of the bipartite NS2-specific exon enhancer are redundant in function, and when the 2018 PTC was combined with a deletion of the 3' enhancer element, the exon was skipped in the majority of the viral P4-generated product. Such exon skipping in response to a PTC, but not a missense mutation at nt 2018, could be suppressed by frame shift mutations in either exon of NS2 which reopened the NS2 open reading frame, as well as by improvement of the upstream intron 3' splice site. These results suggest that a PTC can interfere with the function of an exon splicing enhancer in an open reading frame-dependent manner and that the PTC is recognized in the nucleus.  相似文献   

4.
5.
Human immunodeficiency virus type 1 (HIV-1) pre-mRNA splicing is regulated in order to maintain pools of unspliced and partially spliced viral RNAs as well as the appropriate levels of multiply spliced mRNAs during virus infection. We have previously described an element in tat exon 2 that negatively regulates splicing at the upstream tat 3' splice site 3 (B. A. Amendt, D. Hesslein, L.-J. Chang, and C. M. Stoltzfus, Mol. Cell. Biol. 14:3960-3970, 1994). In this study, we further defined the element to a 20-nucleotide (nt) region which spans the C-terminal vpr and N-terminal tat coding sequences. By analogy with exon splicing enhancer (ESE) elements, we have termed this element an exon splicing silencer (ESS). We show evidence for another negative cis-acting region within tat-rev exon 3 of HIV-1 RNA that has sequence motifs in common with a 20-nt ESS element in tat exon 2. This sequence is juxtaposed to a purine-rich ESE element to form a bipartite element regulating splicing at the upstream tat-rev 3' splice site. Inhibition of the splicing of substrates containing the ESS element in tat exon 2 occurs at an early stage of spliceosome assembly. The inhibition of splicing mediated by the ESS can be specifically abrogated by the addition of competitor RNA. Our results suggest that HIV-1 RNA splicing is regulated by cellular factors that bind to positive and negative cis elements in tat exon 2 and tat-rev exon 3.  相似文献   

6.
In in vitro splicing reactions, influenza virus NS1 mRNA was not detectably spliced, but nonetheless very efficiently formed ATP-dependent 55S complexes containing the U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins (snRNPs) (C. H. Agris, M. E. Nemeroff, and R. M. Krug, Mol. Cell. Biol. 9:259-267, 1989). We demonstrate that the block in splicing was caused by two regions in NS1 mRNA: (i) a large intron region (not including the branchpoint sequence) and (ii) an 85-nucleotide 3' exon region near the 3' end of the exon. After removal of both of these regions, the 5' and 3' splice sites and branchpoint of NS1 mRNA functioned efficiently in splicing, indicating that they were not defective. The two inhibitory regions shared one property: splicing inhibition was independent of the identity of the nucleotide sequence in either region. In other respects, however, the two inhibitory regions differed. The inhibitory activity of the intron region was proportional to its length, indicating that the inhibition was probably due to size only. In contrast, the 3' exon, which was of small size, was a context element; i.e., it functioned only when it was located at a specific position in the 3' exon of NS1 mRNA. To determine how these intron and exon regions inhibited splicing, we compared the types of splicing complexes formed by intact NS1 mRNA with those formed by spliceable NS1 mRNA lacking the intron and exon regions. Splicing complexes were formed by using purified splicing factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In addition to facilitating the nuclear export of incompletely spliced viral mRNAs, equine infectious anemia virus (EIAV) Rev regulates alternative splicing of the third exon of the tat/rev mRNA. In the presence of Rev, this exon of the bicistronic RNA is skipped in a fraction of the spliced mRNAs. In this report, the cis-acting requirements for exon 3 usage were correlated with sequences necessary for Rev binding and transport of incompletely spliced RNA. The presence of a purine-rich exon splicing enhancer (ESE) was required for exon 3 recognition, and the addition of Rev inhibited exon 3 splicing. Glutathione-S-transferase (GST)-Rev bound to probes containing the ESE, and mutation of GAA repeats to GCA within the ESE inhibited both exon 3 recognition in RNA splicing experiments and GST-Rev binding in vitro. These results suggest that Rev regulates alternative splicing by binding at or near the ESE to block SR protein-ESE interactions. A 57-nucleotide sequence containing the ESE was sufficient to mediate Rev-dependent nuclear export of incompletely spliced RNAs. Rev export activity was significantly inhibited by mutation of the ESE or by trans-complementation with SF2/ASF. These results indicate that the ESE functions as a Rev-responsive element and demonstrate that EIAV Rev mediates exon 3 exclusion through protein-RNA interactions required for efficient export of incompletely spliced viral RNAs.  相似文献   

8.
9.
The protective immunity conferred by a set of recombinant vaccinia viruses containing the entire coding sequence of dengue virus type 4 nonstructural glycoprotein NS1 plus various flanking sequences was evaluated by using a mouse encephalitis model. Mice immunized with recombinant vNS1-NS2a, which expresses authentic NS1, were solidly protected against intracerebral dengue virus challenge. However, mice immunized with recombinants vNS1-15%NS2a and vRSVG/NS1-15%NS2a, which express aberrant forms of NS1, were only partially protected (63 to 67% survival rate). Serologic analysis showed that mice immunized with vNS1-NS2a developed high titers of antibodies to NS1 as measured by radioimmunoprecipitation, enzyme-linked immunosorbent assay, and complement-mediated cytolytic assays. In addition, a pool of sera from these animals was protective in a passive transfer experiment. Lower titers of NS1-specific antibodies were detected in sera of animals immunized with vNS1-15%NS2a or vRSVG/NS1-15%NS2a by all three assays. These data support the view that protection against dengue virus infection in mice may be mediated at least in part by NS1-specific antibodies through a mechanism of complement-mediated lysis of infected cells. Additionally, immunization with two recombinant viruses expressing authentic NS1 of dengue virus type 2 conferred partial protection (30-50%) against dengue virus type 2 challenge.  相似文献   

10.
11.
12.
Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.  相似文献   

13.
mRNAs R1 and R2 of the parvovirus minute virus of mice encode the two essential viral regulatory proteins NS1 and NS2. Both RNAs are spliced between map units 44 and 46 (nucleotides 2280 and 2399); R2 RNAs are additionally spliced upstream between map units 10 and 39 (nucleotides 514 and 1989), using a nonconsensus donor and poor 3' splice site. The relative accumulation of R1 and R2 is determined by alternative splicing: there is twice the steady-state accumulation of R2 relative to that of R1 throughout viral infection, though they are generated from the same promoter and have indistinguishable stabilities. Here we demonstrate that efficient excision of the large intron to generate R2 is dependent on at least the initial presence, in P4-generated pre-mRNAs, of sequences within the downstream small intron. This effect is orientation dependent and related to the size of the intervening exon. Prior splicing of the small intron is unnecessary. Excision of the large intron is enhanced by changing its donor site to consensus, but only in the presence of the small intron sequences. Excision of the large intron is also enhanced by improving the polypyrimidine tract within its 3' splice site; however, in contrast, this change renders excision of the large intron independent of the downstream small intron. We suggest that sequences within the small intron play a primary role in efficient excision of the upstream large intron, perhaps as the initial entry site(s) for an element(s) of the splicesome, which stabilizes the binding of required factors to the polypyrimidine tract within the 3' splice site of the large intron.  相似文献   

14.
15.
Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.  相似文献   

16.
17.
The exon sequence TAGG can inhibit splicing.   总被引:13,自引:2,他引:11       下载免费PDF全文
The fibroblast growth factor receptor-2 gene contains a pair of alternative exons, K-SAM and BEK, which are spliced in a cell type specific manner. We have shown previously that a 10 nucleotide sequence within the K-SAM exon exerts a negative effect on K-SAM exon splicing independent of cell type. We demonstrate here that this sequence works autonomously, as it can repress splicing of a heterologous exon, the EIIIb alternative exon of the rat fibronectin gene. By introducing point mutations into the 10 nucleotide sequence, we have shown that the functional portion is limited to 4 nucleotides, TAGG, the dinucleotide AG of which is particularly important. This short sequence may participate in the control of splicing of exons carrying it, provided that they carry weak splice sites.  相似文献   

18.
19.
EDA is a facultative type III homology of human fibronectin encoded by an alternative spliced exon. The EDA+ and EDA- mRNA forms show a cell type specific distribution with their relative proportion varying during development, aging and oncogenic transformation. We have previously demonstrated that an 81 bp nucleotide sequence within the exon itself is essential for differential RNA processing. Fine mapping of cis acting elements within this region has been carried out to identify possible target sites for the modulation of alternative splicing. There are at least two short nucleotide sequences involved. Element A (GAAGAAGA) is a positive modulator for the recognition of the exon, its deletion results in constitutive exclusion of the EDA exon. Element B (CAAGG) is a negative modulator for exon recognition, its deletion results in constitutive inclusion of the EDA exon. This bipartite structure of the splicing enhancer is a novel feature of the mammalian exons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号