首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel chemo-genetic approach for the analysis of general acid-base catalysis by nucleobases in ribozymes is reviewed. This involves substitution of a C-nucleoside with imidazole in place of a natural nucleobase. The Varkud satellite ribozyme in which the nucleobase at the critical 756 position has been replaced by imidazole is active in both cleavage and ligation reactions. Similarly, a modified hairpin ribozyme with the nucleobase at position 8 substituted by imidazole is active in cleavage and ligation reactions. Although the rates are lower than those of the natural ribozymes, they are significantly greater than other variants at these positions. The dependence of the hairpin ribozyme reaction rates on pH has been studied. Both cleavage and ligation reactions display a bell-shaped pH dependence, consistent with general acid-base catalysis involving the nucleotide at position 8.  相似文献   

2.
Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson-Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson-Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3-R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem-loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson-Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes.  相似文献   

3.
In order to understand the catalysis mechanism of the hairpin ribozyme, mutant ribozymes were constructed. The distance between the loop A domain and the loop B domain was extended by inserting various lengths of nucleotide linkers at the hinge region in cis mutants, or the domains were separated physically in a trans mutant. All the mutant ribozymes, including the trans mutant, could cleave substrate RNA at the predicted site. A cis mutant with a single nucleotide insertion exhibited cleavage activity about twice as high as that of the wild-type (wt) ribozyme. The insertion of 2-5 nucleotides (nt) gradually reduced the activity to the level of the wt ribozyme. Insertion of a longer linker, up to 11 nt, resulted in the reduction of activity to one half of that of the wt ribozyme. The ribozyme with a single nucleotide insertion at the hinge region seems to form a more suitable conformation for catalysis by three-dimensional fold-back of the loop B to loop A containing the cleavage site. The trans mutant, in which the A and B domains were physically separated, maintained a significant level of activity, suggesting that both domains are necessary for catalysis, but separable. These results demonstrate that interaction between the A and B domains results in catalysis.  相似文献   

4.
Twenty-two years after their discovery as ribozymes, the self-splicing group I introns are finally disclosing their architecture at the atomic level. The crystal structures of three group I introns solved at moderately high resolution (3.1-3.8A) reveal a remarkably conserved catalytic core bound to the metal ions required for activity. The structure of the core is stabilized by an intron-specific set of long-range interactions that involves peripheral elements. Group I intron structures thus provide much awaited and extremely valuable snapshots of how these ribozymes coordinate substrate binding and catalysis.  相似文献   

5.
The active centers of the hairpin and VS ribozymes are both generated by the interaction of two internal loops, and both ribozymes use guanine and adenine nucleobases to accelerate cleavage and ligation reactions. The centers are topologically equivalent and the relative positioning of key elements the same. There is good evidence that the cleavage reaction of the VS ribozyme is catalyzed by the guanine (G638) acting as general base and the adenine (A756) as general acid. We now critically evaluate the experimental mechanistic evidence for the hairpin ribozyme. We conclude that all the available data are fully consistent with a major contribution to catalysis by general acid-base catalysis involving the adenine (A38) and guanine (G8). It appears that the two ribozymes are mechanistically equivalent.  相似文献   

6.
The highly conserved P7 region is generally believed to act as a major portion of the catalytic site in the Group I intron ribozyme. However, its functions have not been elucidated except for the fact that it specifically binds a cofactor guanosine required for self-splicing reaction. We attempted an in vitro selection experiment to determine the sequence requirements of this region in the mechanism of catalysis by using the Tetrahymena ribozyme. We found that the selected active clones have the secondary structure similar to that of the wild type with few exceptions. However, their primary sequences were not conserved except G264 and C311 that are the major elements of the binding site for the guanosine. Our results suggest that the unique secondary structure of the P7 region is a primary requisite for the catalytic function of this class of ribozymes.  相似文献   

7.
Han J  Burke JM 《Biochemistry》2005,44(21):7864-7870
We have used nucleobase substitution and kinetic analysis to test the hypothesis that hammerhead catalysis occurs by a general acid-base mechanism, in which nucleobases are directly involved in deprotonation of the attacking 2'-hydroxyl group and protonation of the 5'-oxygen that serves as the leaving group in the cleavage reaction. We demonstrate that simultaneous substitution of two important nucleobases, G8 and G12, with 2,6-diaminopurine shifts the pH optimum of the cleavage reaction from greater than 9.5 to approximately 6.8 in two different hammerhead constructs. Controls involving substitution with other nucleobases and combinations of nucleobases at G5, G8, and/or G12 do not show this behavior. The observed changes in the pH-rate behavior are consistent with a mechanism in which N1 protonation-deprotonation events of guanine or 2,6-diaminopurine at positions 8 and 12 are essential for catalysis. Further support for the participation of G8 and G12 comes from photochemical cross-linking experiments, which show that G8 and G12 can stack upon the two substrate nucleobases at the reactive linkage, G(or U)1.1 and C17 (Heckman, J. E., Lambert, D., and Burke, J. M. (2005) Photocrosslinking detects a compact active structure of the hammerhead ribozyme, Biochemistry 44, 4148-4156). Together, these results support a model in which the hammerhead undergoes a transient conformational change into a catalytically active structure, in which stacking of G8 and G12 upon the nucleobases spanning the cleavage site provides an appropriate architecture for general acid-base catalysis. The hammerhead and hairpin ribozymes may share similarities in the organization of their active sites and their catalytic mechanism.  相似文献   

8.
The two ribozymes found in hepatitis delta virus RNA form related but non-identical secondary structures and display similar cleavage properties in vitro. Three of the non-duplex elements hypothesized to contribute nucleotides to the catalytic core vary slightly in length between the two ribozymes and the differences are conserved in clinical isolates. Possible functional relationships of the core sequence elements were tested by systematically exchanging sequences between the two ribozymes. It was found that switching two of the elements (L3 and J4/2) from one ribozyme to the other reduced cleavage activity in both. On the other hand, exchanging the third region (J1/4) resulted in enhanced activity for one ribozyme and a smaller increase in activity for the other. Combining exchanges did not reveal any compensatory interactions involving these particular elements nor did a pattern emerge that would suggest an optimal combination of core sequences for a generalized HDV ribozyme. Non-compensatory behavior reinforces the idea that the non-duplex sequences may form sequence-specific contacts with duplex portions of the ribozyme, but, in addition, these data suggest that there may be selective pressures on the ribozyme sequences in the virus that are not reflected in the in vitro self-cleavage assays.  相似文献   

9.
Expanded divalent metal-ion tolerance of evolved ligase ribozymes   总被引:1,自引:0,他引:1  
Riley CA  Lehman N 《Biochimie》2003,85(7):683-689
Class I ligases are artificial ribozymes that catalyze the joining of two single-stranded RNAs. These ribozymes are between 120 and 160 nucleotides in length, making them intermediate in size for catalytic RNAs. Previous characterization of the b1-207 ribozyme suggests that it behaves similar to larger ribozymes in terms of divalent metal-ion dependence. This molecule displays a strong preference for magnesium for catalysis, and is inactive in any other metal except manganese, which actually inhibits its operation in magnesium. Here, we sought to examine the metal-ion usages of two ligases that were obtained through continuous evolution in vitro from the b1-207 sequence framework. We found an expanded catalytic range for the E(100)(#3) and B(16)(#19) ribozymes, as they are both catalytically active in calcium and strontium, and less inhibited by manganese. Though not selected for activity in these salts, the evolved ribozymes exhibit several adaptations to in vitro catalysis, and their ability to accommodate metals other than magnesium can be viewed as an example of a molecular exaptation.  相似文献   

10.
丁型肝炎病毒核酶的结构特点与催化作用机制   总被引:2,自引:0,他引:2  
丁型肝炎病毒(HDV)核酶是小核酶的一种,在分子结构和作用机制等方面都有许多不同于其它核酶的特性。以其晶体结构的揭示为基础,近几年对其立体构型及催化机制方面的研究取得了很大进展,尤其是发现HDV核酶的胞嘧啶侧链在生理条件下能发挥一般酸碱催化作用(generalacidbasecatalysis),引起了极大关注。对HDV核酶结构和催化机制的研究,将使核酶被有目的地改造,并极大地推动它在应用方面的研究。  相似文献   

11.
A novel and general approach is described for generating versions of RNA-cleaving ribozymes (RNA enzymes) and DNAzymes (DNA enzymes), whose catalytic activity can be controlled by the binding of activator molecules. Variants of the RNA-cleaving 10-23 DNAzyme and 8-17 DNAzyme were created, whose catalysis was activated by up to approximately 35-fold by the binding of the effector adenosine. The design of such variants was possible even though the tertiary folding of the two DNAzymes is not known. Variants of the hammerhead ribozyme were constructed, to respond to the effectors ATP and flavin mononucleotide. Whereas in conventional allosteric ribozymes, effector-binding modulates the chemical step of catalysis, here, effectors exercise their effect upon the substrate-binding step, by stabilizing the enzyme-substrate complex. Because such an approach for controlling the activity of DNAzymes/ribozymes requires no prior knowledge of the enzyme's secondary or tertiary folding, this regulatory strategy should be generally applicable to any RNA-cleaving ribozyme or DNAzyme, natural or in vitro selected, provided substrate-recognition is achieved by Watson-Crick base-pairing.  相似文献   

12.
Over the past two decades, RNA catalysis has become a major topic of research. On the one hand, naturally occurring ribozymes have been extensively investigated concerning their structure and functional mechanisms. On the other hand, the knowledge gained from these studies has been used to engineer ribozyme variants with novel properties. In addition to RNA engineering by means of rational design, powerful techniques for selection of ribozymes from large pools of random sequences were developed and have been widely used for the generation of functional nucleic acids. RNA as catalyst has been accompanied by DNA, and nowadays a large number of ribozymes and deoxyribozymes are available. The field of ribozyme generation and selection has been extensively reviewed. With respect to the field of biotechnology, RNA and DNA catalysts working on peptides or proteins, or which are designed to control protein synthesis, are of utmost importance and interest. Therefore, in this review, we will focus on engineered nucleic acid catalysts for peptide synthesis and modification as well as for intracellular control of gene expression.  相似文献   

13.
Vaidya A  Suga H 《Biochemistry》2001,40(24):7200-7210
The dependence on metal ions for catalysis is one of the hallmark characteristics of ribozymes. Yet despite this universal reliance, the functional role of divalent ions in promoting RNA catalysis is manifold. In this study we elucidate some different roles metal ions play as catalytic cofactors, by comparing two functionally co-evolved acyl-transferase ribozymes. Earlier studies performed on the in vitro selected acyl-transferase ribozyme, E18 [Suga, H., Cowan, J. A., and Szostak, J. W. (1998) Biochemistry 28, 10118-10125], revealed the requirement of a fully hydrated (outer-sphere) Mg2+ ion for catalytic activity. Interestingly, one class of acyl-transferase ribozymes isolated from the same RNA pool as E18 displays a unique metal dependency and is believed to be interacting with inner-sphere coordinated Mg2+ ions. New results show that one of these inner-sphere coordinating ribozymes, HS01, assumes a cloverleaf secondary structure closely resembling E18, yet apparently facilitates a distinct catalytic mechanism. Furthermore, the nature of the RNA-metal interaction(s) in HS01 seems to be dictating a unique reaction mechanism that exhibits a titratable moiety at a near-neutral pK(a). In light of the critical role metal ions play in biochemistry and the proper function of RNAs, these results compare two distinct manners by which metals serve to promote the catalysis of the same reaction.  相似文献   

14.
In this paper we report newly selected artificial modules that enhance the kcat values comparable with or higher than those of the wild-type ribozyme with broad substrate specificity. The elements required for the catalysis of Group I intron ribozymes are concentrated in the P3-P7 domain of their core region, which consists of two conserved helical domains, P4-P6 and P3-P7. Previously, we reported the in vitro selection of artificial modules residing at the peripheral region of a mutant Group I ribozyme lacking P4-P6. We found that derivatives of the ribozyme containing the modules performed the reversal of the first step of the self-splicing reaction efficiently by using their affinity to the substrate RNA, although their kcat values and substrate specificity were uninfluenced and limited, respectively. The results show that it is possible to add a variety of new domains at the peripheral region that play a role comparable with that of the conserved P4-P6 domain.  相似文献   

15.
The two group IC3 pre-tRNA introns from Azoarcus and Synechococcus share very analogous secondary structures. They are small group I ribozymes that possess only two peripheral domains, P2 and P9. However, the 3′-splice site hydrolysis activity of the Synechococcus ribozyme critically depends on P2 whereas that of Azoarcus does not, indicating that the structure–function relationships of the two ribozymes are strikingly different despite their structural resemblance. To identify the element(s) that determines the catalytic properties of these ribozymes, we undertook analyses of chimeric ribozymes prepared by swapping their structural elements. We found that the difference can be attributed to a small number of nucleotides within the conserved core region. Further analysis by employing in vitro selection revealed that a base triple interaction (P4bp3 × J6/7-2) is a critical element for determining activity and suggests the existence of a novel base quintuple involving the base triple P4bp5 × J8/7-5.  相似文献   

16.
ABSTRACT

Hammerhead ribozymes are a model system for studying molecular mechanism of RNA catalysis. Physicochemical data-driven mechanistic studies are an indispensable step towards understanding the catalysis of hammerhead ribozymes. Here we characterized a model RNA duplex with catalytically important sheared-type G12-A9 base pair and A9-G10.1 metal ion-binding motif in hammerhead ribozymes. By using high magnetic field NMR, all base proton signals, including catalytic residues, were unambiguously assigned. We further characterized structural features of this RNA molecule and found that it reflects the structural features of the A9-G10.1 motif of hammerhead ribozymes. Therefore, this RNA molecule is suitable for extracting an intrinsic physicochemical properties of catalytically important residues.  相似文献   

17.
Hodgson DR  Suga H 《Biopolymers》2004,73(1):130-150
In vitro selection has allowed the isolation of many new ribozymes that are able to catalyze an ever-widening array of chemical transformations. Mechanistic studies on these selected ribozymes have provided valuable insight into the methods that RNA can invoke to overcome different catalytic tasks. We focus on the methods employed in these mechanistic studies using the acyl-transferase family of selected ribozymes as well-studied reference systems. Chemical and biochemical techniques have been used in tandem in order to draw conclusions on the various modes of catalysis employed by the different family members. In turn, this type of mechanistic information may provide a means for the redesign and optimization of existing ribozymes or the basis for new selection systems for more powerful RNA catalysts.  相似文献   

18.
Structure, folding and mechanisms of ribozymes   总被引:8,自引:0,他引:8  
The past two years have seen exciting developments in RNA catalysis. A completely new ribozyme (possibly two) has come along and several new structures have been determined, including three different group I intron species. Although the origins of catalysis remain incompletely understood, a significant convergence of views has happened in the past year, together with the discovery of new super-fast ribozymes. There is persuasive evidence of general acid-base chemistry in nucleolytic ribozymes, whereas catalysis of peptidyl transfer in the ribosome seems to result largely from orientation and proximity effects. Lastly, important new folding-enhancing elements have been discovered.  相似文献   

19.
P7 is highly conserved in Group I self-splicing intron ribozymes. This region is known to coordinate metal ions and bind a cofactor guanosine required for the self-splicing. To further investigate the fundamental role of the corresponding region in the Tetrahymena ribozyme, we attempted to identify minimal requirements for the base-paired region excluding the guanosine binding site. We discovered that a variety of sequences are eligible and its derivatives possessing extra nucleotide(s) can still conduct the first step of splicing, indicating that no particular base-pairing is essential in this region for conducting the reaction in vitro. The results provide two hypotheses for the fundamental role of this region: (i) if the region contains element(s) that are strictly required in the catalysis, they are not necessarily tightly fixed in the ribozyme and (ii) if not, its fundamental role may simply be to coordinate neighboring regions that are directly involved in the catalysis.  相似文献   

20.
Bevilacqua PC 《Biochemistry》2003,42(8):2259-2265
Several small ribozymes carry out self-cleavage at a specific phosphodiester bond to yield 2',3'-cyclic phosphate and 5'-hydroxyl termini. Prior mechanistic and structural studies on the HDV ribozymes led to the proposal that the pK(a) of C75 is shifted toward neutrality, making it an effective general acid. Recent mechanistic studies on the hairpin ribozyme have led to models in which protonation of G8 is required for phosphodiester cleavage, either for general acid catalysis or for electrostatic stabilization. Inspection of recent crystal structures of the hairpin ribozyme, including a complex with a vanadate transition state mimic, suggests an alternative model involving general acid-base catalysis with G8 serving as the general base and A38 as the general acid. This model is consistent with the literature on the hairpin ribozyme, including pH-rate profiles of wild-type and mutant ribozymes and solvent isotope effects. General mechanistic considerations for RNA catalysis suggest that the penalty for having general acids and bases with pK(a)s removed from neutrality is not as severe as expected. These considerations suggest that general acid-base catalysis may be a common mechanistic strategy of RNA enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号