首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycosidic bond torsion angles and the conformations of the ribose of Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P (magnesium adenosine 5'-[beta, gamma-imido]triphosphate) bound to Ca2+ATPase, both native and modified with fluorescein isothiocyanate (FITC), in intact sarcoplasmic reticulum have been determined by the measurement of proton-proton transferred nuclear Overhauser enhancements by 1H-NMR spectroscopy. This method shows clearly the existence of a low-affinity ATP binding site after modification of the high-affinity site with FITC. For all three nucleotides bound to both the high-affinity (catalytic) site and the low-affinity site, we find that the conformation about the glycosidic bond is anti, the conformation of the ribose 3'-endo of the N type and the conformation about the ribose C4'-C5' bond either gauche-trans or trans-gauche. The values for the glycosidic bond torsion angles chi (O4'-C1'-N9-C4) for Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P bound to the low-affinity site of FITC-modified Ca2+ATPase are approximately equal to 270 degrees, approximately equal to 260 degrees and approximately equal to 240 degrees respectively. In the case of the nucleotides bound to the high-affinity (catalytic) site of native Ca2+ATPase, chi lies in the range 240-280 degrees.  相似文献   

2.
Lin Y  Nageswara Rao BD 《Biochemistry》2000,39(13):3636-3646
Adenosine conformations of adenosine 5'-triphosphate (ATP) and adenosine 5'-monophosphate (AMP), and of an ATP analogue, adenylyl imidodiphosphate (AMPPNP), bound to Escherichia coliadenylate kinase (AKe) in the complexes of AKe.Mg(II)ATP, AKe.AMP.Mg(II)GDP, AKe. AMPPNP, and AKe.Mg(II)AMPPNP were determined by transferred two-dimensional nuclear Overhauser effect spectroscopy (TRNOESY) measurements and molecular dynamics simulations. The glycosidic torsion angles, chi, deduced for the adenine nucleotides in these complexes are 51 degrees, 37 degrees, 49 degrees, and 47 degrees, respectively, with an experimental error of about +/-5 degrees. These values are in general agreement with those previously measured for other ATP-utilizing enzymes, suggesting a possible common motif for adenosine recognition and binding. The pseudorotational phase angle, P, of the sugar puckers for the bound nucleotides varied between 50 degrees and 103 degrees. These solution-state conformations are significantly different from those in published data from X-ray crystallography. A computation of the ligand NOEs, made by using the program CORCEMA [Moseley, H. N. B., Curto, E. V., and Krishna, N. R. (1995) J. Magn. Reson. B108, 243-261] with the protein protons in the vicinity of nucleotide included, on the basis of the X-ray structure of the AKe.AMP.AMPPNP complex [Berry, M. B., Meador, B., Bilderback, T., Liang, P., Glaser, M., and Philips, G. N. , Jr. (1994) Proteins: Struct., Funct., Genet. 19, 183-198], showed that polarization transfer to the protein protons does not produce significant errors in the structures determined by considering the ligand NOEs alone.  相似文献   

3.
N Murali  Y Lin  Y Mechulam  P Plateau    B D Rao 《Biophysical journal》1997,72(5):2275-2284
The conformations of MgATP and AMP bound to a monomeric tryptic fragment of methionyl tRNA synthetase have been investigated by two-dimensional proton transferred nuclear Overhauser effect spectroscopy (TRNOESY). The sample protocol was chosen to minimize contributions from adventitious binding of the nucleotides to the observed NOE. The experiments were performed at 500 MHz on three different complexes, E.MgATP, E.MgATP.L-methioninol, and E.AMP.L-methioninol. A starter set of distances obtained by fitting NOE build-up curves (not involving H5' and H5") were used to determine a CHARMm energy-minimized structure. The positioning of the H5' and H5" protons was determined on the basis of a conformational search of the torsion angle to obtain the best fit with the observed NOEs for their superposed resonance. Using this structure, a relaxation matrix was set up to calculate theoretical build-up curves for all of the NOEs and compare them with the observed curves. The final structures deduced for the adenosine moieties in the three complexes are very similar, and are described by a glycosidic torsion angle (chi) of 56 degrees +/- 5 degrees and a phase angle of pseudorotation (P) in the range of 47 degrees to 52 degrees, describing a 3(4)T-4E sugar pucker. The glycosidic torsion angle, chi, deduced here for this adenylyl transfer enzyme and those determined previously for three phosphoryl transfer enzymes (creatine kinase, arginine kinase, and pyruvate kinase), and one pyrophosphoryl enzyme (PRibPP synthetase), are all in the range 52 degrees +/- 8 degrees. The narrow range of values suggests a possible common motif for the recognition and binding of the adenosine moiety at the active sites of ATP-utilizing enzymes, irrespective of the point of cleavage on the phosphate chain.  相似文献   

4.
We have conducted two dimensional NOESY studies on the molecule d(G2T5G2) to characterize the structure of the tetramolecular complex previously identified by calorimetric and spectroscopic studies (1). Analysis of the NOE and exchange cross peaks observed in the NOESY spectra establishes the formation of structured conformations at low temperature (5 degrees C). Significantly, within each strand of these structured conformations, the G1 and G8 residues adopt syn glycosidic torsion angles, while the G2 and G9 residues adopt anti glycosidic torsion angles. Consequently, any structure proposed for the tetramolecular complex of d(G2T5G2) must have alternating G(syn) and G(anti) glycosidic torsion angles within each strand. The implications of this observation for potential structures of the tetramolecular complex of d(G2T5G2) are discussed.  相似文献   

5.
Internuclear distances obtained from nuclear Overhauser effects were used in combination with a distance geometry algorithm to determine the conformation of Mg(alpha,beta-methylene)ATP bound to the Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) both in the absence and presence of cognate and noncognate amino acids. Mg(alpha,beta-methylene)ATP, a nonhydrolyzable analog of ATP, was used to prevent hydrolysis of the nucleotide in the presence of either cognate or noncognate amino acids. Kinetic analysis showed that Mg(alpha,beta-methylene)ATP was a linear competitive inhibitor with respect to ATP in the ATP-pyrophosphate exchange reaction with a Ki = 1.2 mM. The pattern of internuclear Overhauser effects on Mg(alpha,beta-methylene)ATP bound to delta MTS was qualitatively consistent only with an anti glycosidic torsional angle, suggesting that the adenosine portion of the nucleotide is uniquely oriented in the binary enzyme-nucleotide complex. Nearly identical patterns of nuclear Overhauser effects were also observed in ternary complexes containing either cognate L-methionine or noncognate L-homocysteine amino acids. Distance geometry calculations permitted the range and conformational space of the allowed adenine-ribose glycosidic torsional angles in each of the complexes to be better defined and compared. Average adenine-ribose glycosidic torsional angles for enzyme-bound Mg(alpha,beta-methylene)ATP of -106 +/- 9 degrees, -99 +/- 11 degrees, and -97 +/- 11 degrees were determined for the delta MTS.Mg(alpha,beta-methylene)ATP, delta MTS.Mg(alpha,beta-methylene)ATP.L-methionine, and delta MTS.Mg(alpha,beta-methylene)ATP.L-homocysteine complexes, respectively. Comparison of the three enzyme-bound conformations showed that a single nucleotide structure having an adenine-ribose glycosidic torsional angle of -98 degrees with a 3'-endo to O4'-exo ribose sugar pucker was, within error, consistent with the experimental internuclear distances obtained in all three complexes. The nearly identical anti glycosidic torsional angles observed in all three complexes demonstrates that the conformation of the adenosine moiety of the enzyme-bound nucleotide is not sensitive to the presence or the nature of the amino acid bound at the aminoacyladenylate site. Therefore, conformational changes known to occur in the methionyl-tRNA synthetase upon ligand binding appear not to alter the bound conformation of the nucleotide. Information on the conformation and arrangement of substrates bound at the aminoacyladenylate site of delta MTS is necessary for understanding the molecular mechanisms involved in amino acid activation and discrimination.  相似文献   

6.
Dissociation and unfolding of homodimeric glutathione S-transferase Y7F mutant from Schistosoma japonicum (SjGST-Y7F) were investigated at equilibrium using urea as denaturant. The conserved residue Tyr7 plays a central role in the catalytic mechanism and the mutation Tyr-Phe yields an inactive enzyme that is able to bind the substrate GSH with a higher binding constant than the wild type enzyme. Mutant SjGST-Y7F is a dimer at pH 6 or higher and a stable monomer at pH 5 that binds GSH (K value of 1.2x10(5)+/-6.4x10(3)M(-1) at pH 6.5 and 6.3x10(4)+/-1.25x10(3)M(-1) at pH 5). The stability of the SjGST-Y7F mutant was studied by urea induced unfolding techniques (DeltaG(W)=13.86+/-0.63kcalmol(-1) at pH 6.5 and DeltaG(W)=11.22+/-0.25kcalmol(-1) at pH 5) and the monomeric form characterized by means of size exclusion chromatography, fluorescence, and electrophoretic techniques.  相似文献   

7.
31P nuclear magnetic resonance (NMR) measurements (at 121.5 MHz and 5 degrees C) were made on complexes of 3-phosphoglycerate kinase with ADP and 3-P-glycerate. Addition of Mg(II) to E.ADP shifts the alpha-P signal downfield by 3.8 ppm such that the alpha-P signal superimposes that for beta-P(E.MgADP). Such a shift is atypical among the Mg(II)-nucleotide complexes with other ATP-utilizing enzymes. This shift allowed the determination that enzyme bound ADP is saturated with Mg(II) for [Mg(II)]/[ADP] = 3.0--similar to that reported for ATP complexes with this enzyme (B.D. Ray and B.D. Nageswara Rao, Biochemistry 27, 5574 (1988]. This parallel behavior suggests that ADP binds at two sites on the enzyme as does ATP with disparate Mg(II) affinities. 31P relaxation times in E.MnADP.vanadate.3-P-glycerate and E.CoADP.vanadate.3-P-glycerate complexes indicate that these are long-lived, tightly bound complexes. 31P chemical shift measurements on diamagnetic complexes (with Mg(II] revealed three signals in the 2-5 ppm region (attributable to 3-P-glycerate) only upon addition of all the components necessary to form the E.MgADP.vanadate.3-P-glycerate complex. Subsequent sequestration of Mg(II) from the complex with excess EDTA reversed the Mg(II) induced effects on the ADP signals but did not cause coalescence of the three signals seen in the 2-5 ppm region. Addition of excess sulfate to dissociate these complexes from the enzyme resulted in a single resonance of 3-P-glycerate. The use of arsenate in place of vanadate yielded very similar results. These results suggest that, in the presence of MgADP, vanadate or arsenate, and 3-P-glycerate, the enzyme catalyzed the formation of multiple structurally distinguishable complexes that are stable on the enzyme and labile off the enzyme.  相似文献   

8.
Transferred nuclear Overhauser enhancement spectroscopy (TRNOE) was used to observe changes in a ligand's conformation upon binding to its specific antibody. The ligands studied were methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-4-fluoro-beta-D-galactopyra nos ide (me4FGal2) and its selectively deuteriated analogue, methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-2-deuterio-4-fluoro-beta -D- galactopyranoside (me4F2dGal2). The monoclonal antibody was mouse IgA X24. The solution conformation of the free ligand me4F2dGal2 was inferred from measurements of vicinal 1H-1H coupling constants, long-range 1H-13C coupling constants, and NOE cross-peak intensities. For free ligand, both galactosyl residues adopt a regular chair conformation, but the NMR spectra are incompatible with a single unique conformation of the glycosidic linkage. Analysis of 1H-1H and 1H-13C constants indicates that the major conformer has an extended conformation: phi = -120 degrees; psi = 180 degrees; and omega = 75 degrees. TRNOE measurements on me4FGal2 and me4F2dGal2 in the presence of the specific antibody indicate that the pyranose ring pucker of each galactose ring remains unchanged, but rotations about the glycosidic linkage occur upon binding to X24. Computer calculations indicate that there are two sets of torsion angles that satisfy the observed NMR constraints, namely, phi = -152 +/- 9 degrees; psi = -128 +/- 7 degrees; and omega = -158 +/- 6 degrees; and a conformer with phi = -53 +/- 6 degrees; psi = 154 +/- 10 degrees; and omega = -173 +/- 6 degrees. Neither conformation is similar to any of the observed conformations of the free disaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
With the exception of catalase-peroxidases, heme peroxidases show no significant ability to oxidize hydrogen peroxide and are trapped and inactivated in the compound III form by H2O2 in the absence of one-electron donors. Interestingly, some KatG variants, which lost the catalatic activity, form compound III easily. Here, we compared the kinetics of interconversion of ferrous enzymes, compound II and compound III of wild-type Synechocystis KatG, the variant Y249F, and horseradish peroxidase (HRP). It is shown that dioxygen binding to ferrous KatG and Y249F is reversible and monophasic with apparent bimolecular rate constants of (1.2 +/- 0.3) x 10(5) M(-1) s(-1) and (1.6 +/- 0.2) x 10(5) M(-1) s(-1) (pH 7, 25 degrees C), similar to HRP. The dissociation constants (KD) of the ferrous-dioxygen were calculated to be 84 microm (wild-type KatG) and 129 microm (Y249F), higher than that in HRP (1.9 microm). Ferrous Y249F and HRP can also heterolytically cleave hydrogen peroxide, forming water and an oxoferryl-type compound II at similar rates ((2.4 +/- 0.3) x 10(5) M(-1) s(-1) and (1.1 +/- 0.2) x 10(5) M(-1) s(-1) (pH 7, 25 degrees C)). Significant differences were observed in the H2O2-mediated conversion of compound II to compound III as well as in the spectral features of compound II. When compared with HRP and other heme peroxidases, in Y249F, this reaction is significantly faster ((1.2 +/- 0.2) x 10(4) M(-1) s(-1))). Ferrous wild-type KatG was also rapidly converted by hydrogen peroxide in a two-phasic reaction via compound II to compound III (approximately 2.0 x 10(5) M(-1) s(-1)), the latter being also efficiently transformed to ferric KatG. These findings are discussed with respect to a proposed mechanism for the catalatic activity.  相似文献   

10.
Phycobilisome composition and possible relationship to reaction centers   总被引:2,自引:0,他引:2  
The photosynthetic apparatus was studied in Anacystis nidulans wild type and in a spontaneous pigment mutant 85Y which had improved growth in far-red light (greater than 650 nm). Two phycobiliproteins, C-phycocyanin (lambda max 625) and allophycocyanin (lambda max 650), were present in a molar ratio of approximately 3:1 in the wild type and approximately 0.4:1 in the mutant. Phycobilisomes of wild type cells were larger (57 X 30 nm) than those of the mutant 85Y (28 X 15 nm). In the mutant they seemed to consist primarily of the allophycocyanin core. Fluorescence emission maxima of wild type and mutant 85Y phycobilisomes were at 680 nm (23 degrees C) and 685 nm (-196 degrees C). Excitation maxima of phycobilisomes were at 630 and 650 nm for the wild type and the mutant 85Y, respectively. The phycobilisomes of wild type cells whether grown in white or far-red light had the same size and pigment composition. A typical wild type cell in white light had a thylakoid area of 22.8 microns 2, but in far-red light the area was reduced to 13.5 microns 2, which was close to that of 85Y at 13.6 microns 2. Chlorophyll molecules per cell decreased in far-red light from 1.1 X 10(7) in wild type (white light) to 4.5 X 10(6) in mutant 85Y (far-red). The number of phycobilisomes per cell (approx 2 X 10(4)), calculated from the phycobiliprotein content and phycobilisome size, was about the same in wild type (white light) and mutant 85Y (far-red light), but the number of phycobilisomes per unit area of thylakoid was significantly greater in mutant 85Y than in wild type. The present results suggest that the phycobilisomes are linked with reaction centers and that the PSII complement (photo-system II and phycobilisome) was fully maintained in far-red light.  相似文献   

11.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

12.
In the crystal structure of bovine mitochondrial F(1)-ATPase (MF(1)) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the side chain oxygen of betaThr(163) interacts directly with Mg(2+) coordinated to 5'-adenylyl beta, gamma-imidodiphosphate or ADP bound to catalytic sites of beta subunits present in closed conformations. In the unliganded beta subunit present in an open conformation, the hydroxyl of betaThr(163) is hydrogen-bonded to the carboxylate of betaGlu(199). Substitution of betaGlu(201) (equivalent to betaGlu(199) in MF(1)) in the alpha(3)beta(3)gamma subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 with cysteine or valine increases the propensity to entrap inhibitory MgADP in a catalytic site during hydrolysis of 50 microM ATP. These substitutions lower K(m3) (the Michaelis constant for trisite ATP hydrolysis) relative to that of the wild type by 25- and 10-fold, respectively. Fluorescence quenching of alpha(3)(betaE201C/Y341W)(3)gamma and alpha(3)(betaY341W)(3)gamma mutant subcomplexes showed that MgATP and MgADP bind to the third catalytic site of the double mutant with 8.4- and 4.4-fold higher affinity, respectively, than to the single mutant. These comparisons support the hypothesis that the hydrogen bond observed between the side chains of betaThr(163) and betaGlu(199) in the unliganded catalytic site in the crystal structure of MF(1) stabilizes the open conformation of the catalytic site during ATP hydrolysis.  相似文献   

13.
Photosynthetic characteristics along with phototolerance and photoinhibition of photosystem II (PS II) were monitored in Synechocystis sp. PCC 6803 wild type (KC) and its psbAII mutants viz., I6 (N322I, I326F, and F328S), G6 (N267Y), and H7 (Y254C and I314V) that have up to three point mutations, localized in the D-E loop of the D1 polypeptide of PSII reaction centre. These strains exhibited entirely different growth trends upon shifting from 30 micormol m(-2)s(-1) to high irradiance (500 micromol m(-2)s(-1) , 30 degrees C). The I6 and H7 cells grew well, whereas KC and G6 cells showed inability for cell multiplication. The photosynthetic efficiency demonstrated about 50% loss in chlorophyll fluorescence of variable yield (Fv/Fm) within 20-30 min in all mutants, whereas the wild type (KC) cells could reach the same level of loss in 2 hr. I6 and H7 cells showed continuous cell growth and maintenance under long-term exposure of high light compared to G6 mutant and wild type cells. The wild type cells showed slow decrease in their photochemical activity and Fv/Fm values, compared to mutant cells. The recovery seemed to be almost identical, and also stimulated by growth light, inspite of differential photoinhibitory behaviours. Darkness and translational inhibitor lincomycin both were found to be unassociated with the restoration of photoinhibited process of PS II.  相似文献   

14.
We report a multifrequency (9.6-, 94-, 190-, and 285-GHz) EPR study of a freeze-quenched intermediate obtained from reaction of substrate-free cytochrome P450cam (CYP101) and its Y96F and Y96F/Y75F mutants with peroxy acids. It is generally assumed that in such a shunt reaction an intermediate [Fe(IV)=O, porphyrin-pi-cation radical] is formed, which should be identical to the species in the natural reaction cycle. However, for the wild type as well as for the mutant proteins, a porphyrin-pi-cation radical is not detectable within 8 ms. Instead, EPR signals corresponding to tyrosine radicals are obtained for the wild type and the Y96F mutant. Replacement of both Tyr-96 and Tyr-75 by phenylalanine leads to the disappearance of the tyrosine EPR signals. EPR studies at 285 GHz on freeze-quenched wild type and Y96F samples reveal g tensor components for the radical (stretched g(x) values from 2.0078 to 2.0064, g(y) = 2.0043, and g(z) = 2.0022), which are fingerprints for tyrosine radicals in a heterogeneous polar environment. The measurements at 94 GHz using a fundamental mode microwave resonator setup confirm the 285-GHz study. From the simulation of the hyperfine structure in the 94-GHz EPR spectra the signals have been assigned to Tyr-96 in the wild type and to Tyr-75 in the Y96F mutant. We suggest that a transiently formed Fe(IV)=O porphyrin-pi-cation radical intermediate in P450cam is reduced by intramolecular electron transfer from these tyrosines within 8 ms.  相似文献   

15.
D M Epstein  R H Abeles 《Biochemistry》1992,31(45):11216-11223
The function of a hydrogen bond network, comprised of the hydroxyl groups of Tyr 171 and Ser 214, in the hydrophobic S2 subsite of alpha-lytic protease, was investigated by mutagenesis and the kinetics of a substrate analog series. To study the catalytic role of the Tyr 171 and Ser 214 hydroxyl groups, Tyr 171 was converted to phenylalanine (Y171F) and Ser 214 to alanine (S214A). The double mutant (Y171F: S214A) also was generated. The single S214A and double Y171F:S214A mutations cause differential effects on catalysis and proenzyme processing. For S214A, kcat/Km is (4.9 x 10(3))-fold lower than that of wild type and proenzyme processing is blocked. For the double mutant (Y171F:S214A), kcat/Km is 82-fold lower than that of wild type and proenzyme processing occurs. In Y171F, kcat/Km is 34-fold lower than that of wild type, and the proenzyme is processed. The data indicate that Ser 214, although conserved among serine proteases and hydrogen bonded to the catalytic triad [Brayer, G. D., Delbaere, L. T. J., & James, M. N. G. (1979) J. Mol. Biol. 131, 743], is not essential for catalytic function in alpha-lytic protease. A substrate series (in which peptide length is varied) established that the mutations (Y171F and Y171F:S214A) do not alter enzyme-substrate interactions in subsites other than S2. The pH dependence of kcat/Km for Y171F and Y171F:S214A has changed less than 0.5 unit from that of wild type; this suggests the catalytic triad is unperturbed. In wild type, hydrophobic interactions at S2 increase kcat/Km by up to (1.2 x 10(3))-fold with no effect on Km.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.  相似文献   

17.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

18.
A comparative study of photosystem II complexes isolated from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contains normal stacked thylakoid membranes, and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked grana or essentially unstacked thylakoids with occasional membrane doublings, has been carried out. The corresponding photosystem II complexes had an O2 evolving activity ranging from 290 (for the wild type) to 1100 mol O2 x mg chlorophyll-1 x h-1 (for the mutant Su/su var. Aurea). The reduced photosynthetic unit size was also obvious in the mangenese and cytochromeb559 content. The photosystem II complex from the wild type contained 4 Mn and 1 cytochromeb559 per 200 to 280 chlorophylls, while the corresponding value for the mutant Su/su var. Aurea was 4 Mn and 1 cytochromeb559 per 35 to 60 chlorophylls. We have also examined the polypeptide composition and show that the photosystem II complex from the wild type consisted of polypeptides of 48, 42, 33, 32, 30, 28, 23, 21, 18, 16 and 10 kDa, while the mutant complex mainly contained the polypeptides of 48, 42, 33, 32, 30, 28 and 10 kDa. In the mutant photosystem II complex the light-harvesting chlorophyll protein (peptide of 28 kDa) was reduced by a factor of 5 to 6 as compared to the wild type. With respect to the peptide composition and the photosynthetic unit size, the Triton-solubilized photosystem II complex from the mutant Su/su var. Aurea was very similar to O2 evolving photosystem II reaction center core complexes.Abbreviations PS photosystem - chl chlorophyll - LHCP light-harvesting chlorophyll a/b protein complex  相似文献   

19.
The thermal stability of bovine brain hsp73, Escherichia coli DnaK, and its mutant T199A was studied by a combination of spectroscopic and chromatographic methods. DnaK undergoes a temperature-induced conformational change that leads to the formation of a molten globule at physiologically relevant temperatures (midpoint of the transition, tm, 41 degrees C). Native DnaK binds to a denatured form of alpha-lactalbumin in a temperature-dependent manner with maximum rate at about 40 degrees C. The molten globule of DnaK is unable to bind denatured alpha-lactalbumin but recovers native structure and activity upon cooling. The half-life of the refolding process is 10 min at 35 degrees C. Mg/ATP and Mg/ADP increase the thermal stability of DnaK; in the presence of these nucleotides the tm is shifted to 59 degrees C. Binding of Mg/ATP (but not Mg/ADP or Mg/adenosine 5'-[gamma-thio]triphosphate) causes a conformational change in DnaK as determined by the emission fluorescence spectrum. The DnaK mutant T199A which lacks the threonine residue that is essential for ATP hydrolysis and autophosphorylation activity (McCarty, J. S., and Walker, G. C. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9513-9517) shows nearly identical properties to the wild type in the presence or absence of nucleotides. Hsp73 undergoes similar temperature-induced transitions as determined by spectroscopic methods (Palleros, D.R., Welch, W.J., and Fink, A.L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 5719-5723); however, contrary to DnaK, the molten globule of hsp73 irreversibly aggregates at temperatures higher than its tm (42 degrees C).  相似文献   

20.
Wang F  Elmquist CE  Stover JS  Rizzo CJ  Stone MP 《Biochemistry》2007,46(29):8498-8516
The conformations of C8-dG adducts of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) positioned in the C-X1-G, G-X2-C, and C-X3-C contexts in the C-G1-G2-C-G3-C-C recognition sequence of the NarI restriction enzyme were compared, using the oligodeoxynucleotides 5'-d(CTCXGCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', 5'-d(CTCGXCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', and 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' (X is the C8-dG adduct of IQ). These were the NarIIQ1, NarIIQ2, and NarIIQ3 duplexes, respectively. In each instance, the glycosyl torsion angle chi for the IQ-modified dG was in the syn conformation. The orientations of the IQ moieties were dependent upon the conformations of torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)], which were monitored by the patterns of 1H NOEs between the IQ moieties and the DNA in the three sequence contexts. The conformational states of IQ torsion angles alpha' and beta' were predicted from the refined structures of the three adducts obtained from restrained molecular dynamics calculations, utilizing simulated annealing protocols. For the NarIIQ1 and NarIIQ2 duplexes, the alpha' torsion angles were predicted to be -176 +/- 8 degrees and -160 +/- 8 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle alpha' was predicted to be 159 +/- 7 degrees . Likewise, for the NarIIQ1 and NarIIQ2 duplexes, the beta' torsion angles were predicted to be -152 +/- 8 degrees and -164 +/- 7 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle beta' was predicted to be -23 +/- 8 degrees . Consequently, the conformations of the IQ adduct in the NarIIQ1 and NarIIQ2 duplexes were similar, with the IQ methyl protons and IQ H4 and H5 protons facing outward in the minor groove, whereas in the NarIIQ3 duplex, the IQ methyl protons and the IQ H4 and H5 protons faced into the DNA duplex, facilitating the base-displaced intercalated orientation of the IQ moiety [Wang, F., Elmquist, C. E., Stover, J. S., Rizzo, C. J., and Stone, M. P. (2006) J. Am. Chem. Soc. 128, 10085-10095]. In contrast, for the NarIIQ1 and NarIIQ2 duplexes, the IQ moiety remained in the minor groove. These sequence-dependent differences suggest that base-displaced intercalation of the IQ adduct is favored when both the 5'- and 3'-flanking nucleotides in the complementary strand are guanines. These conformational differences may correlate with sequence-dependent differences in translesion replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号