首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the yeast Saccharomyces cerevisiae three different DNA polymerases alpha, delta and epsilon are involved in DNA replication. DNA polymerase alpha is responsible for initiation of DNA synthesis and polymerases delta and epsilon are required for elongation of DNA strand during replication. DNA polymerases delta and epsilon are also involved in DNA repair. In this work we studied the role of these three DNA polymerases in the process of recombinational synthesis. Using thermo-sensitive heteroallelic mutants in genes encoding DNA polymerases we studied their role in the process of induced gene conversion. Mutant strains were treated with mutagens, incubated under permissive or restrictive conditions and the numbers of convertants obtained were compared. A very high difference in the number of convertants between restrictive and permissive conditions was observed for polymerases alpha and delta, which suggests that these two polymerases play an important role in DNA synthesis during mitotic gene conversion. Marginal dependence of gene conversion on the activity of polymerase epsilon indicates that this DNA polymerase may be involved in this process but rather as an auxiliary enzyme.  相似文献   

2.
The activities of DNA polymerases alpha and delta, in extracts from Chinese hamster ovary (CHO) cells, were assayed in order to determine whether these polymerases are regulated during the cell cycle. An exponential population of CHO cells was separated into enriched populations of G-1, S, and G-2/M phases of cell cycle by centrifugal elutriation. Total cell homogenates from each population were assayed for DNA polymerase activity by measuring labeled nucleotide incorporation into the exogenous templates oligo(dT).poly(dA) and DNase I activated calf thymus DNA. In these experiments, specific DNA polymerase inhibitors were added to assays of the cellular extracts to allow for the independent measurement of activities of DNA polymerases alpha and delta. Comparisons of total DNA polymerase activity from cellular extracts, sampled from each portion of the cell cycle, demonstrated no significant change with respect to the concentration of total protein. However, results indicate that the activity of DNA polymerase delta increases with respect to that of DNA polymerase alpha in the G-2/M portion of the cell cycle. This difference in relative activities of DNA polymerases alpha and delta suggests a coordinate regulation of a specific species of DNA polymerase during the cell cycle.  相似文献   

3.
Specific serological relationships were found among the partially purified DNA polymerases of the two groups of avian viruses whose virions contain RNA and a DNA polymerase-the avian leukosis-sarcoma viruses and the reticuloendotheliosis viruses-and three avian species which are natural hosts for these viruses: chickens, turkeys, and Pekin ducks. No relationships were found to DNA polymerases of HeLa cells or Escherichia coli. These results are consistent with the hypothesis that RNA viruses with a DNA polymerase originated from normal cellular components.  相似文献   

4.
5.
Formation of strand-separated, functional complexes at promoters was compared for RNA polymerases from the mesophile Escherichia coli and the thermophile Thermus aquaticus. The RNA polymerases contained sigma factors that were wild type or bearing homologous alanine substitutions for two aromatic amino acids involved in DNA melting. Substitutions in the sigmaA subunit of T. aquaticus RNA polymerase impair promoter DNA melting equally at temperatures from 25 to 75 degrees C. However, homologous substitutions in sigma70 render E. coli RNA polymerase progressively more melting-defective as the temperature is reduced below 37 degrees C. The effects of the mutations on the mechanism of promoter DNA melting were investigated by studying the interaction of wild type and mutant RNA polymerases with "partial promoters" mimicking promoter DNA where the nucleation of DNA melting had taken place. Because T. aquaticus and E. coli RNA polymerases bound these templates similarly, it was concluded that the different effects of the mutations on the two polymerases are exerted at a step preceding nucleation of DNA melting. A model is presented for how this mechanistic difference between the two RNA polymerase could explain our observations.  相似文献   

6.
Pseudomonas oleovorans accumulates poly(3-hydroxyalkanoates) (PHAs) after growth on medium chain length hydrocarbons. Large amounts of this polyester are synthesized when cells are grown under nitrogen-limiting conditions. When nitrogen is resupplied in the medium, the accumulated PHA is degraded. In this paper, we describe mutants which are defective in the synthesis or in the degradation of PHA. These mutants were used to select DNA fragments which encode PHA polymerases and a PHA depolymerase. A 25-kilobase (kb) DNA fragment was isolated from P. oleovorans that complements a Pseudomonas putida mutant unable to accumulate PHA. Subcloning resulted in the assignment of a 6.4-kb EcoRI fragment as the pha locus, containing genetic information for PHA synthesis. Mutants in the PHA degradation pathway were also complemented by this fragment, indicating that genes encoding PHA biosynthetic and degradative enzymes are clustered. Analysis of the DNA sequence of the 6.4-kb fragment revealed the presence of two open reading frames encoding PHA polymerases based on homology to the poly(3-hydroxybutyrate) polymerase from Alcaligenes eutrophus. A third open reading frame complemented the PHA degradation mutation and is likely to encode a PHA depolymerase. The presence of two PHA polymerases is due to a 2098-base pair DNA duplication. The PHA polymerases are 53% identical and show 35-40% identity to the poly(3-hydroxybutyrate) polymerase. No clear difference in specificity was found for the PHA polymerases. However, with the pha locus cloned on a multicopy vector, a polymer was accumulated that contains a significantly higher amount of substrate-derived monomers. An increase in the rate of polyester synthesis versus oxidation of the monomers in the beta-oxidation explains these findings.  相似文献   

7.
Bacterial NAD-dependent Taq and Tth DNA ligases are capable of significantly increasing the yield of long PCR products when the amplification is carried out using bacterial family A DNA polymerases, e.g. Taq or Tth DNA polymerases, or with enzymatic blends containing these polymerases. We also show that Taq and Tth DNA ligases improve the results of PCR in the absence of NAD and therefore in the absence of DNA ligase activity. These observations suggest that bacterial DNA ligases can interact with these DNA polymerases, presumably as accessory proteins, thereby enhancing the efficiency of DNA polymerization. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 5, pp. 685–690.  相似文献   

8.
DNA polymerases have been prepared from leukaemic and normal spleens and their fidelity in copying a polyd AT).polyd(AT) template assessed. The leukaemic cytoplasmic DNA polymerases were less accurate than the controls whereas no difference in accuracy was observed in the nuclear DNA polymerases. The preparations of leukaemic cytoplasmic DNA polymerase also contained the enzyme terminal deoxynucleotidyl transferase. When this enzyme was removed by further purification the accuracy of the cytoplasmic DNA polymerases increased to that of the controls.  相似文献   

9.
The interactions of azidothymidine triphosphate, the metabolically active form of the anti-AIDS drug azidothymidine (zidovudine), with the cellular DNA polymerases alpha, delta, and epsilon, as well as with the RNA primer-forming enzyme DNA primase were studied in vitro. DNA polymerase alpha was shown to incorporate azidothymidine monophosphate into a growing polynucleotide chain. This occurred 2000-fold slower than the incorporation of natural dTTP. Despite the ability of polymerase alpha to use azidothymidine triphosphate as an alternate substrate, this compound was only marginally inhibitory to the enzyme (Ki greater than 1 mM). Furthermore, the DNA primase activity associated with DNA polymerase alpha was barely inhibited by azidothymidine triphosphate (Ki greater than 1 mM). Inhibition was more pronounced for DNA polymerases delta and epsilon. The type of inhibition was competitive with respect to dTTP, with Ki values of 250 and 320 microM, respectively. No incorporation of azidothymidine monophosphate was detectable with these two DNA polymerases because their associated 3'- to 5'-exonuclease activities degraded primer molecules prior to any measurable elongation. Template-primer systems with a preformed 3'-azidothymidine-containing primer terminus inhibited the three replicative polymerases rather potently. DNA polymerase alpha was inhibited with a Ki of 150 nM and polymerases delta and epsilon with Ki values of 25 and 20 nM, respectively. The type of inhibition was competitive with respect to the unmodified substrate poly(dA).oligo(dT) for all DNA polymerases tested. Performed 3'-azidothymidine-containing primers hybridized to poly(dA) were rather resistant to degradation by the 3'- to 5'-exonuclease of DNA polymerases epsilon and more susceptible to the analogous activity that copurified with DNA polymerase delta. It is proposed that the repair of 3'-azidothymidine-containing primers might become rate-limiting for the process of DNA replication in cells that have been treated with azidothymidine triphosphate.  相似文献   

10.
Three different DNA polymerases have been isolated from rat ascites hepatoma cells [1--3]. The molecular weight of a DNA polymerase (polymerase C) purified from the soluble fraction of the cells was estimated to be 142 000 by sedimentation on a sucrose gradient, while the molecular weights of two DNA polymerases (polymerase P-1 and P-2) purified from nuclear membrane-chromatin fraction were estimated to be 117 000 and 44 000, respectively, by the same method. Under certain conditions, the poly (dT) strand of poly[(dA)-(dT)] was copied well by the polymerases, especially by the nuclear polymerases. Poly (dC) was a good template for the high molecular weight DNA polymerases C and P-1, but poly(dT) and poly(dA) were not effective templates. By addition of complementary oligoribonucleotides, the single-stranded deoxypolymers were copied by the high molecular weight polymerases C and P-1. When single-stranded fd phage DNA was used as template, the polymerization reactions by the high molecular weight polymerases were stimulated by the concomitant synthesis of RNA. This indicates that the oligoribonucleotide acts as a primer in these reactions.  相似文献   

11.
12.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

13.
The involvement of DNA polymerases alpha, beta, and gamma in DNA repair synthesis was investigated in subcellular preparations of cultured hamster and human cells. A variety of DNA damaging agents, including bleomycin, neocarzinostatin, UV irradiation, and alkylating agents, were utilized to induce DNA repair. The sensitivity of repair synthesis, as well as replicative synthesis and purified DNA polymerase beta activity, to inhibition by the DNA polymerase inhibitors dideoxythymidine triphosphate, aphidicolin, cytosine arabinoside triphosphate, and N-ethylmaleimide was determined. No evidence was obtained for a major role of polymerase gamma in any type of repair synthesis. In both hamster and human cells, the sensitivity of bleomycin- and neocarzinostatin-induced repair synthesis to ddTTP inhibition was essentially identical with that observed for purified polymerase beta, indicating these repair processes proceeded through a mechanism utilizing polymerase beta. Repair synthesis induced by UV irradiation and alkylating agents was not sensitive to ddTTP, indicating repair of these lesions occurred through a pathway primarily utilizing a different DNA polymerase; presumably polymerase alpha. However, replicative synthesis was much more sensitive to polymerase alpha inhibitors than was repair synthesis induced by UV irradiation or alkylating agents. Neither the amount of DNA damage nor the amount of induced repair synthesis influenced the degree to which the different DNA polymerases were involved in repair synthesis. The possibility that "patch size" or the actual type of DNA damage determines the extent to which different polymerases participate in DNA repair synthesis is discussed.  相似文献   

14.
The activity of DNA polymerase alpha and beta was assayed in heated HeLa S3 cells as well as in nuclei isolated from these cells. The enzyme activity as measured in cells and in nuclei has been compared with the extent of cell survival after the different hyperthermic doses. It was found that although the activity of the cellular DNA polymerases was related to cell survival after single heat doses, no correlation was found when thermotolerant cells were heated. When the activity of the DNA polymerases was determined in nuclei isolated from non-heated and heated cells, more polymerase activity was found in the nuclei of the heated cells. However, the heat sensitivity of DNA polymerase activity was the same for nuclei isolated from control, pre-heated and thermotolerant cells. Heat protection of polymerase activity by erythritol and sensitization by procaine was found when cells, but not when nuclei, were heated in the presence of these modifiers. It is concluded that (the nuclear bound) DNA polymerases are not to be considered as key enzymes in cellular heat sensitivity of HeLa S3 cells.  相似文献   

15.
RNA-dependent DNA polymerases from Rous-associated virus-O and avian myeloblastosis virus were partially purified by affinity chromatography and compared to each other. The enzymes are indistinguishable in the immunoglobulin inhibition test and by several enzymological criteria, such as optimum curves for the concentrations of Mg2+, K+, H+; monophasic Lineweaver-Burk plot for dTTP and biphasic Lineweaver-Burk plot for dGTP. In thermal inactivation studies a small difference can be observed, suggesting a minor difference in the physical structures of the enzymes. Our findings are consistent with the idea that the RNA-dpendent DNA polymerases of endogenous and exogenous avian leukosis viruses are very closely related to each other and therefore may be regarded as one group of polymerases.  相似文献   

16.
A series of 6-anilinouracils, dGTP analogues which selectively inhibit specific bacterial DNA polymerases, were examined for their capacity to inhibit purified DNA polymerases from HeLa cells. The p-n-butyl derivative (BuAU) was found to inhibit DNA polymerase alpha with a Ki of approximately 60 microM. The inhibitory effect of BuAU was reversed specifically by dGTP and was observed only for DNA polymerase alpha; polymerases beta and lambda were not inhibited by drug at concentrations as high as 1 mM. BuAU also was inhibitory in vivo in HeLa cell culture; at 100 microM it reversibly inhibited cell division and selectively depressed DNA synthesis. The results of these studies indicate that BuAU is an inhibitor with considerable potential as a specific probe with which to dissect the structure of mammalian polymerase alpha and its putative role in cellular DNA replication.  相似文献   

17.
P Laquel  S Litvak    M Castroviejo 《Plant physiology》1993,102(1):107-114
Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta.  相似文献   

18.
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.  相似文献   

19.
DNA primase synthesizes short RNA primers used by DNA polymerases to initiate DNA synthesis. Two proteins of approximately 60 and 50 kD were recognized by specific antibodies raised against yeast primase subunits, suggesting a high degree of analogy between wheat and yeast primase subunits. Gel-filtration chromatography of wheat primase showed two active forms of 60 and 110 to 120 kD. Ultraviolet-induced cross-linking with radioactive oligothymidilate revealed a highly labeled protein of 60 kD. After limited trypsin digestion of wheat (Triticum aestivum L.) primase, a major band of 48 kD and two minor bands of 38 and 17 kD were observed. In the absence of DNA polymerases, the purified primase synthesizes long RNA products. The size of the RNA product synthesized by wheat primase is considerably reduced by the presence of DNA polymerases, suggesting a modulatory effect of the association between these two enzymes. Lowering the primase concentration in the assay also favored short RNA primer synthesis. Several properties of the wheat DNA primase using oligoadenylate [oligo(rA)]-primed or unprimed polythymidilate templates were studied. The ability of wheat primase, without DNA polymerases, to elongate an oligo(rA) primer to long RNA products depends on the primer size, temperature, and the divalent cation concentration. Thus, Mn2+ ions led to long RNA products in a very wide range of concentrations, whereas with Mg2+ long products were observed around 15 mM. We studied the ability of purified wheat DNA polymerases to initiate DNA synthesis from an RNA primer: wheat DNA polymerase A showed the highest activity, followed by DNA polymerases B and CII, whereas DNA polymerase CI was unable to initiate DNA synthesis from an RNA primer. Results are discussed in terms of understanding the role of these polymerases in DNA replication in plants.  相似文献   

20.
The activity of deoxyribonucleic acid polymerase in some species of algae   总被引:2,自引:1,他引:1  
1. The activities of DNA polymerase preparations from the algae Euglena gracilis, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Anabaena variabilis and Anacystis nidulans were measured. The blue-green algae Anabaena and Anacystis contain a 5-20-fold higher activity of the enzyme than do the green algae. DNA polymerases from the blue-green algae show a pH optimum of 9 and prefer a relatively low Mg(2+) concentration (1-3mm). DNA polymerases from the green algae, however, display a pH optimum between 7.5 and 8.5 and an optimum Mg(2+) concentration of 8mm. With all algae, a higher polymerase activity was obtained with denatured salmon sperm DNA as template than with native DNA. All four deoxyribonucleoside 5'-triphosphates must be present for full activity of the polymerases. 2. With one exception, the deoxyribonuclease activities in the preparations, measured under conditions of the DNA polymerase assay, are low compared with corresponding preparations from Escherichia coli. Chlamydomonas extracts contain a high deoxyribonuclease activity. 3. After purification on columns of DEAE-cellulose, the polymerase activity was linear over a wide range of protein concentrations, except for Chlamydomonas preparations, where the observed deviation from linearity was probably attributable to the high nuclease activity. 4. DNA polymerases from all these algae bind strongly to DNA-cellulose; 6-40-fold purifications of the enzyme were obtained by chromatography on columns of DNA-cellulose. 5. The partially purified polymerases of Euglena and Anacystis are heat-labile but become much more heat-stable when tested in the presence of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号