首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report the zebrafish genetic linkage groups are assigned to specific chromosomes using fluorescence in situ hybridization (FISH) with BAC probes containing genes mapped to each linkage group (LG). Chromosomes were identified using a combination of relative size and arm ratios. The largest genetic maps generally corresponded to the largest chromosomes, but genetic recombination tended to be elevated in the smaller chromosomes and near telomeres. Large insert clones containing genes near telomeres often hybridized to telomeres of multiple chromosome pairs, suggesting the presence of shared subtelomeric repetitive DNAs near telomeres. Evidence from comparative gene mapping in medaka, zebrafish, pufferfish, and humans suggests that the linkage groups of these species have the content of duplicate proto-chromosomes. However, these duplicate linkage groups are not associated with chromosomes of similar size or morphology. This suggests that considerable chromosome restructuring occurred subsequent to the genome duplication in teleosts.  相似文献   

2.
Microdissection of metaphase chromosome preparations of diploid oat Avena strigosa (2n = 14) allowed isolation of the three individual chromosomes with distinct morphologies, numbers 2, 3 and 7. Using a PCR approach based on the DNA of microdissected chromosomes, STS derivatives of RFLP markers, genetically mapped in Avena spp. linkage maps, have been physically assigned to these three chromosomes. Based on either two or four RFLP-derived STS markers, the A. strigosa chromosomes 2 and 3 were found to be homoeologous to the oat linkage groups C and E, respectively. With the DNA of chromosome 7, four RFLP-derived STS markers located within the central part of linkage group F and two distal ends of linkage group G were amplified. Accordingly, chromosome 7 corresponds to linkage group F and, most probably, is involved in an A. strigosa-specific chromosomal translocation relative to the diploid species Avena atlantica and Avena hirtula, of which the cross progeny was used for linkage mapping of the tested RFLP clones.  相似文献   

3.
Gene-linkage groups (classical linkage groups, CLGs; molecular linkage groups, MLGs) and chromosome relationship in soybean [ Glycine max (L.) Merr., 2n = 40] is not yet established. However, primary trisomics provide an invaluable cytogenetic tool to associate genes and linkage groups to specific chromosomes. We have assigned 11 MLGs to soybean chromosomes by using primary trisomics (2 x + 1 = 41) and SSR markers. Primary trisomics were hybridized with Glycine soja Sieb. and Zucc. (2n = 40) in the greenhouse, F(1) plants with 2n = 40 and 41 were identified cytologically and 41 chromosome plants were selfed. A deviation from the 1:2:1 ratio in the F(2) population suggests a marker is associated with a chromosome. Of the possible 220 combinations involving 20 MLGs and 11 primary trisomics, 151 combinations were examined. The relationships between soybean chromosomes and MLGs are: 1 = D1a+q, 3 = N, 5 = A1, 8 = A2, 9 = K, 13 = F, 14 = C1, 17 = D2, 18 = G, 19 = L and 20 = I. This study sets the stage to establish relationship between nine remaining MLGs with the other genetically unidentified nine primary trisomics. The association of CLGs with the soybean chromosomes will be discussed.  相似文献   

4.
The legume genus, Lupinus, has many notable properties that make it interesting from a scientific perspective, including its basal position in the evolution of Papilionoid legumes. As the most economically important legume species, L. angustifolius L. (narrow-leafed lupin) has been subjected to much genetic analysis including linkage mapping and genomic library development. Cytogenetic analysis has been hindered by the large number of small morphologically uniform chromosomes (2n = 40). Here, we present a significant advance: the development of chromosome-specific cytogenetic markers and assignment of the first genetic linkage groups (LGs) to chromosomal maps of L. angustifolius using the bacterial artificial chromosome (BAC)-fluorescence in situ hybridization approach. Twelve clones produced single-locus signals that "landed" on 7 different chromosomes. Based on BAC-end sequences of those clones, genetic markers were generated. Eight clones localized on 3 chromosomes, allowed these chromosomes to be assigned to 3 LGs. An additional single-locus clone may be useful to combine an unassigned group (Cluster-2) with main LGs. This work provides a strong foundation for future identification of all chromosomes with specific markers and for complete integration of narrow-leafed lupin LGs. This resource will greatly facilitate the chromosome assignment and ordering of sequence contigs in sequencing the L. angustifolius genome.  相似文献   

5.
The availability of molecular genetic maps in oat (Avena spp.) and improved identification of chromosomes by C-banding are two recent developments that have made locating linkage groups to chromosomes possible in cultivated hexaploid oat, 2n=6x=42. Monosomic series derived from Avena byzantina C. Koch cv Kanota and from Avena sativa L. cv Sun II were used as maternal plants in crosses with the parents, Kanota-1 and Ogle-C, of the oat RFLP mapping population. Monosomic F1 plants were identified by root-tip cell chromosome counts. For marker analysis, DNAs of eight F2 plants from a monosomic F1 were combined to provide a larger source of DNA that mimicked that of the monosomic F1 plant. Absence of maternal alleles in monosomic F1s served to associate linkage groups with individual chromosomes. Twenty two linkage groups were associated with 16 chromosomes. In seven instances, linkage groups that were independent of each other in recombination analyses were associated with the same chromosome. Five linkage groups were shown to be associated with translocation differences among oat lines. Additionally, the results better-characterized the oat monosomic series through the detection of duplicates and translocation differences among the various monosomic lines. The F1 monosomic series represents a powerful cytogenetic tool with the potential to greatly improve understanding of the oat genome. Received: 24 April 2000 / Accepted: 10 May 2000  相似文献   

6.
Rainbow trout chromosomes were treated with nine restriction endonucleases, stained with Giemsa, and examined for banding patterns. The enzymes AluI, MboI, HaeIII, HinfI (recognizing four base sequences), and PvuII (recognizing a six base sequence) revealed banding patterns similar to the C-bands produced by treatment with barium hydroxide. The PvuII recognition sequence contains an internal sequence of 4 bp identical to the recognition sequence of AluI. Both enzymes produced centromeric and telomeric banding patterns but the interstitial regions stained less intensely after AluI treatment. After digestion with AluI, silver grains were distributed on chromosomes labeled with [3H]thymidine in a pattern like that seen after AluI-digested chromosomes are stained with Giemsa. Similarly, acridine orange (a dye specific for DNA) stained chromosomes digested with AluI or PvuII in patterns resembling those produced with Giemsa stain. These results support the theory that restriction endonucleases produce bands by cutting the DNA at specific base pairs and the subsequent removal of the fragments results in diminished staining by Giemsa. This technique is simple, reproducible, and in rainbow trout produces a more distinct pattern than that obtained with conventional C-banding methods.  相似文献   

7.
Aneuploids of sugi (Cryptomeria japonica) were found in the open-pollinated progenies of triploidplus tree clones. Seven trisomics and one hypotriploid were used to assign the chromosomes to the RFLP linkage groups constructed previously. The Southern blots containing their genomic DNA were hybridized with the labeled DNA clones corresponding to the loci in the linkage map. The additional dosage in autoradiographs showed that the cloned DNA fragment was located on the extra chromosome in the trisomics. On the other hand, the extra chromosome in two trisomics and the chromosome lacking the triplet in the hypotriploid were cytologically identified as chromosome 10 by consistent presence of a secondary constriction in the proximal region of its short arm. As a result, three linkage groups were assigned to their respective chromosomes, namely chromosome 10 and two other chromosomes.  相似文献   

8.
Chromosomes of the pea (Pisum sativum L.) were submitted to fluorescent in situ hybridization (FISH) with probes specific for the oligonucleotides (AG)12, (AC)12, (GAA)10, and (GATA)7 and for the genes encoding 25S rRNA, 5S rRNA and the storage proteins legumin A, K and vicilin. A fourth 5S rRNA gene locus, apparently specific for an accession of the cultivar Grüne Victoria, was newly detected. This allowed all seven chromosome pairs to be distinguished by FISH signals of rRNA genes. The same was possible using a combination of oligonucleotide probes or of oligonucleotides and rRNA gene-specific probes in multicolour FISH. Rehybridization with the 5S rRNA gene-specific probe allowed us to assign vicilin genes to the short arm of chromosome 5, the single legumin A locus to the long arm of chromosome 3 and the legumin B-type genes (exemplified by legumin K) to one locus on the short arm of chromosome 6. Correlation of these data with an updated version of the pea genetic map allowed the assignment of most linkage groups to defined chromosomes. It only remains to be established which of linkage groups IV and VII corresponds to the satellited chromosomes 4 or 7, respectively. Received: 13 February 1998; in revised form: 3 April 1998 / Accepted: 7 April 1998  相似文献   

9.
Brian Snoad 《Genetica》1966,37(1):247-254
By appropriate genetical studies using reciprocal translocation stocks it has been possible to confirmLamprecht's evidence that inPisum there are seven linkage groups. Lamm's evidence for six linkage groups has been shown to be due to incomplete knowledge of the chromosomal structure of certain interchange lines.It is suggested thatLamprecht's system of chromosomal nomenclature should be universally adopted forPisum.Lamm &Miravelle's extended tester set has been accordingly renumbered and the intercrossing of the interchange lines completed in order to extend the confirmatory evidence as to their chromosomal constitution.  相似文献   

10.
Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.  相似文献   

11.
A monoclonal antibody (MAb) specific for rainbow trout thrombocytes was produced and its reactivity was demonstrated by flow cytometry and immuno-electron microscopy. Flow cytometry analysis showed that this MAb (TTL-7D11) reacted positively with about 30% of the peripheral blood leucocytes (PBL) and about 1%, 2%, and 11% of the pronephros, mesonephros, and spleen cells, respectively. Electron microscopy using immunogold labeling demonstrated that this MAb reacted strongly with thrombocytes, where gold beads could be seen attached only to the membrane and canalicular system of these cells. Positive and negative leucocytes for this MAb were obtained by magnetic cell separation. In the positive fraction, 96% of the cells were thrombocytes, while in the negative fraction no more than 3% were, which clearly showed a high purity of the positive fraction. Aggregation studies showed that about 75% of the positive fraction cells aggregated after being mixed with U-46619 thromboxane-mimetic, whereas in the negative fraction only 10% of the cells did so. Thus, utilizing the TTL-7D11 we have succeeded in isolating a pure thrombocyte population, and this would facilitate further studies, particularly on their characteristics and function(s).  相似文献   

12.
Recent advances in mapping the canine genome have led to an increase in the number of linkage studies aimed at dissecting the genetic causes of many hereditary diseases that affect the domestic dog. The first step in developing molecular tools for a whole genome scan was the characterization of a set of microsatellite markers, termed minimal screening set 1 (MSS1), that provided an estimated coverage of 10 cM. A limiting factor in use of the MSS1 is not all of the 172 MSS1 markers have been localized to specific chromosomes. Seventy-five of the markers were positioned on a total of 15 chromosomes with the original publication of the MSS1. The localization based on linkage data of 14 additional MSS1 markers to chromosomes using CRIMAP v. 2.4 to build a linkage map of 113 MSS1 markers that were polymorphic in a kindred of Dalmatians is reported here.  相似文献   

13.
Previous genetic mapping identified three linkage groups (M1, M18 and M26) in the turkey corresponding to chicken chromosome 1 (GGA1). This is inconsistent with previously described chromosomal differences between these species. FISH analysis of BAC clones corresponding to microsatellite markers from each of the three turkey linkage groups, assigned all three linkage groups to a single chromosome (MGA1).  相似文献   

14.

Background

Mitochondrial DNA (mtDNA) is widely used in population genetic and phylogenetic studies in animals. However, such studies can generate misleading results if the species concerned contain nuclear copies of mtDNA (Numts) as these may amplify in addition to, or even instead of, the authentic target mtDNA. The aim of this study was to determine if Numts are present in Aedes aegypti mosquitoes, to characterise any Numts detected, and to assess the utility of using mtDNA for population genetics studies in this species.

Results

BLAST searches revealed large numbers of Numts in the Ae. aegypti nuclear genome on 146 supercontigs. Although the majority are short (80% < 300 bp), some Numts are almost full length mtDNA copies. These long Numts are not due to misassembly of the nuclear genome sequence as the Numt-nuclear genome junctions could be recovered by amplification and sequencing. Numt evolution appears to be a complex process in Ae. aegypti with ongoing genomic integration, fragmentation and mutation and the secondary movement of Numts within the nuclear genome. The PCR amplification of the putative mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit 4 (ND4) gene from 166 Southeast Asian Ae. aegypti mosquitoes generated a network with two highly divergent lineages (clade 1 and clade 2). Approximately 15% of the ND4 sequences were a composite of those from each clade indicating Numt amplification in addition to, or instead of, mtDNA. Clade 1 was shown to be composed at least partially of Numts by the removal of clade 1-specific bases from composite sequences following enrichment of the mtDNA. It is possible that all the clade 1 sequences in the network were Numts since the clade 2 sequences correspond to the known mitochondrial genome sequence and since all the individuals that produced clade 1 sequences were also found to contain clade 2 mtDNA-like sequences using clade 2-specific primers. However, either or both sets of clade sequences could have Numts since the BLAST searches revealed two long Numts that match clade 2 and one long Numt that matches clade 1. The substantial numbers of mutations in cloned ND4 PCR products also suggest there are both recently-derived clade 1 and clade 2 Numt sequences.

Conclusion

We conclude that Numts are prevalent in Ae. aegypti and that it is difficult to distinguish mtDNA sequences due to the presence of recently formed Numts. Given this, future population genetic or phylogenetic studies in Ae. aegypti should use nuclear, rather than mtDNA, markers.  相似文献   

15.
A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)   总被引:20,自引:0,他引:20  
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.  相似文献   

16.
We report the first detailed genetic linkage map of rainbow trout (Oncorhynchus mykiss). The segregation analysis was performed using 76 doubled haploid rainbow trout produced by androgenesis from a hybrid between the "OSU" and "Arlee" androgenetically derived homozygous lines. Four hundred and seventy-six markers segregated into 31 major linkage groups and 11 small groups (< 5 markers/group). The minimum genome size is estimated to be 2627.5 cM in length. The sex-determining locus segregated to a distal position on one of the linkage groups. We analyzed the chromosomal distribution of three classes of markers: (1) amplified fragment length polymorphisms, (2) variable number of tandem repeats, and (3) markers obtained using probes homologous to the 5'' or 3'' end of salmonid-specific small interspersed nuclear elements. Many of the first class of markers were clustered in regions that appear to correspond to centromeres. The second class of markers were more telomeric in distribution, and the third class were intermediate. Tetrasomic inheritance, apparently related to the tetraploid ancestry of salmonid fishes, was detected at one simple sequence repeat locus and suggested by the presence of one extremely large linkage group that appeared to consist of two smaller groups linked at their tips. The double haploid rainbow trout lines and linkage map present a foundation for further genomic studies.  相似文献   

17.
The development of high resolution methods of chromosome banding helped the finding of homologous chromosomes, detecting chromosomal abnormalities, and assigning the gene loci to particular chromosomes in mammals. Unfortunately, small and numerous fish chromosomes do not show GC rich and GC poor compartments, this preventing the establishment of G banding pattern. The combination of techniques enabling the identification of constitutive heterochromatin (C-banding), heterochromatin resistant to restriction endonucleas, NOR bearing chromosomes (AgNO3 banding), or AT rich regions on chromosomes (DAPI banding) in sequential staining provides a better characteristic of fish chromosomes. In this work sequentially DAPI, DdeI, AgNO3 stained chromosomes of rainbow trout resulted in the characteristic banding pattern of some homologous chromosomes. Procedure of FISH with telomere probe and DAPI as a counterstaining fluorochrome visualized simultaneous hybridization signals and DAPI banding. Possibility of detection both FISH and DAPI signals can help in procedures of gene mapping on chromosomes.  相似文献   

18.
Summary Anonymous DNA probes mapping to human chromosome 16 and the distal region of the human X chromosome were isolated from a genomic library constructed using lambda EMBL3 and DNA from a mouse/human hybrid. The hybrid cell contained a der(16)t(X;16)(q26;q24) as the only human chromosome. Fifty clones were isolated using total human DNA as a hybridisation probe. Forty six clones contained single copy DNA in addition to the repetitive DNA. Pre-reassociation with sonicated human DNA was used to map these clones by a combination of Southern blot analysis of a hybrid cell panel containing fragments of chromosomes 16 and X and in situ hybridisation. One clone mapped to 16pter 16p13.11, one clone to 16p13.316p13.11, four clones to 16p13.316p13.13, two clones to 16p13.1316p13.11, one clone to 16p13.11, seven clones to 16p13.1116q12 or 16q13, four clones to 16q12 or 16q13, three clones to 16q1316q22.1, four clones to 16q22.10516q24, and nineteen clones to Xq26Xqter. Two clones mapping to 16p13 detected RFLPs. VK5 (D16S94) detected an MspI RFLP, PIC 0.37. VK20 (D16S96) detected a TaqI RFLP, PIC 0.37 and two MspI RFLPs, PIC 0.30 and 0.50. The adult polycystic kidney disease locus (PKD1) has also been assigned to 16p13. The RFLPs described will be of use for genetic counselling and in the isolation of the PKD1 gene. Similarly, the X clones may be used to isolate RFLPs for genetic counselling and the isolation of genes for the many diseases that map to Xq26qter.  相似文献   

19.
The evolution of a pair of chromosomes that differ in appearance between males and females (heteromorphic sex chromosomes) has occurred repeatedly across plants and animals. Recent work has shown that the male heterogametic (XY) and female heterogametic (ZW) sex chromosomes evolved independently from different pairs of homomorphic autosomes in the common ancestor of birds and mammals but also that X and Z chromosomes share many convergent molecular features. However, little is known about how often heteromorphic sex chromosomes have either evolved convergently from different autosomes or in parallel from the same pair of autosomes and how universal patterns of molecular evolution on sex chromosomes really are. Among winged insects with sequenced genomes, there are male heterogametic species in both the Diptera (e.g., Drosophila melanogaster) and the Coleoptera (Tribolium castaneum), female heterogametic species in the Lepidoptera (Bombyx mori), and haplodiploid species in the Hymenoptera (e.g., Nasonia vitripennis). By determining orthologous relationships among genes on the X and Z chromosomes of insects with sequenced genomes, we are able to show that these chromosomes are not homologous to one another but are homologous to autosomes in each of the other species. These results strongly imply that heteromorphic sex chromosomes have evolved independently from different pairs of ancestral chromosomes in each of the insect orders studied. We also find that the convergently evolved X chromosomes of Diptera and Coleoptera share genomic features with each other and with vertebrate X chromosomes, including excess gene movement from the X to the autosomes. However, other patterns of molecular evolution--such as increased codon bias, decreased gene density, and the paucity of male-biased genes on the X--differ among the insect X and Z chromosomes. Our results provide evidence for both differences and nearly universal similarities in patterns of evolution among independently derived sex chromosomes.  相似文献   

20.
Replication banding technique was applied to the chromosomes of Salmo salar, Salmo trutta, and Oncorhynchus mykiss. The in vitro technique has proved more advantageous than the in vivo technique due to a higher number of bands obtained. The comparison of these replication banding patterns has revealed that some chromosomes of Salmo trutta karyotype appeared associated with Salmo salar and Oncorhynchus mykiss karyotypes by single chromosomal rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号