首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The activation of human serum complement by incubation with zymosan generates C5a which releases histamine from autologous basophils. The characteristics of the C5a-induced histamine release were investigated. It is similar to IgE-mediated reactions in requiring Ca++ and in being inhibited by EDTA. However, it has marked differences from IgE-mediated reactions. C5a, at all concentrations, released histamine completely in less than 2 min. The C5a reaction has a narrow pH optimum that antigen-induced release and occurs well at 17 degrees to 37 degreesC but not at 0 degreesC. The optimal reaction temperature is 25 degrees to 30 degrees C. Unlike the antigen-induced release, no two-stage activation with C5a for the release of histamine could be demonstrated. There was additive release between C5a- IgE-mediated reactions. Leukocytes could be desensitized to the C5a-mediated reaction by 1) incubating the cells at 37 degrees C for 45 min, 2) pretreating the leukocytes with activated serum in the presence of EDTA, and 3) adding the activated serum to the leukocytes at 0 degrees C before transferring to the optimal reaction temperatures. Cells desensitized to the complement-induced release have normal reactions to IgE-mediated histamine release. In parallel experiments, cells from allergic donors desensitized for IgE-mediated reactions by incubation with antigen under sub-optimal conditions release histamine normally upon the addition of C5a. The results indicate that histamine release by C5a involves a mechanism of basophil activation that is different from the pathway involved in the IgE-induced reaction.  相似文献   

2.
Activation of either the alternative or classical pathway of complement generated a factor which induced release of histamine from both non-allergic and allergic human basophils. This factor probably is derived from the complement system since 1) its formation was associated with loss of C3 activity in human serum, 2) chemotactic factor, probably also a complement product, was generated simultaneously, 3) heat inactivation blocked its formation, 4) anti-C3 and anti-C5 blocked formation of the factor, and finally 5) anti-C5 inhibited the activity of the factor once it had been formed. It appears that both complement-mediated and allergen-mediated release of histamine from basophils are secretory, non-cytolytic pathways since both were maximal at 37 degrees C, required the presence of divalent cations, and were inhibited by theophylline. One consistent difference between these two mechanisms was noted: complement-initiated release of histamine occurred more quickly.  相似文献   

3.
Human peripheral blood monocytes generated activities during 24-h culture that were capable of triggering histamine release from 17 of 18 human basophil donors. Monocytes and their in vitro transformed macrophages continued to elaborate these basophil histamine-releasing activities for at least 3 wk in culture. In the 18 basophil donors tested, maximum histamine release induced by monocyte supernatants was 33.8 +/- 5.9% (mean +/- SEM) of total basophil histamine content; optimum anti-IgE-induced release was 38.8 +/- 6.2%. Basophil histamine release in response to monocyte activities was optimal at 37 degrees C and at calcium concentrations of 2 to 5 mM. Release was greater than 90% complete 1 min after challenge and was inhibited by anti-allergic drugs. The mechanism of release appeared to be independent of IgE binding. Gel filtration of supernatants derived from both day 1 (monocyte stage) and day 14 (macrophage stage) cultures demonstrated activity peaks with approximate m.w. of 12,000 and 30,000. In contrast to the marked responsiveness of basophils, only 2 of 10 human lung mast cell preparations responded; release in those preparations was low: 3% and 13% histamine release, respectively. Thus, monocytes produce potent histamine-releasing activities with differential actions on basophils and mast cells.  相似文献   

4.
Release of histamine from human basophils was induced by activation of complement using zymosan. The histamine-releasing factor resembled C5a on the basis of m.w. (15,000) as well as previous studies showing inactivation by anti-C5. Complement-induced release of histamine was compared with allergic release of histamine which is mediated through appropriate allergens and reaginic IgE. Previously we demonstrated that the former reaction occurred more quickly. Both reactions were inhibited by drugs which increase intracellular concentrations of cAMP3 (theophylline, prostaglandin E1, and histamine) or which mimic the action of cAMP (its dibutyrly derivative). Calcium was required for complement-mediated release of histamine and an increasing response was observed up to physiologic concentrations (2 mM). Magnesium (0 to 1 mM) did not affect the amount of histamine released. Also, glycolysis was probably required for optimal release by complement, since both 2-deoxyglucose and iodoacetamide were inhibitory. When basophils were partly enriched by depletion of neutrophils and eosinophils, the percentage of histamine released by complement was unchanged. Finally, it was shown that activated complement desensitized basophils from responding to a second challenge by the same stimulus. Cross-desensitization was not observed between complement and pollen allergens.  相似文献   

5.
DFP inhibits early events in antigen-induced histamine release from human leukocytes. If added to cells 5 min or more after antigen it is ineffective. If added with antigen it can be removed at 5 min but release will still be inhibited. In contrast, ethylenediaminetetraacetate (EDTA) and 2 deoxyglucose (2DG) still inhibit the reactions when added 5 min after antigen. During incubation of leukocytes for 90 to 120 min at 0 degrees C they react with specific antigen since they subsequently release significant quantities of histamine after washing and reincubation at 37 degrees C without addition of antigen. Such priming at 0 degrees C is at least equivalent to priming for 2 to 4 min at 37 degrees C. During antigen priming at 0 degrees C the cells are not activated beyond the step in the release sequence which is inhibited by diisopropylfluorophosphate (DFP). This is apparent from the undiminished inhibitory activity of DFP on these cells. Furthermore, cells primed with antigen at 0 degrees C in the presence of DFP release as much histamine after washing and incubation at 37 degrees D as control cells primed in the absence of DFP. Incubation of leukocytes with specific antigen at 37 degrees C for 3 min resulted in significant but not quite complete priming for subsequent histamine release in the absence of antigen. Most of these primed cells were not activated beyond the step inhibitable by DFP. However, some had completed the entire sequence including the release of histamine while others had not released their histamine but were not inhibited by DFP from subsequent release. After 5 min incubation with antigen at 37 degrees C almost all leukocytes had progressed beyond the stage which is inhibited by DFP. Incubation of leukocytes at 37 degrees C with DFP but without antigen for up to 15 min followed by washing did not impair subsequent antigen-induced histamine release by these cells. Thus, DFP was inhibitory under these conditions only after antigen activation of leukocytes.  相似文献   

6.
We have previously purified and partially characterized histamine releasing factors (HRF), which were derived from a mixture of human mononuclear cells and platelets. We now report the effect of IL-8 upon HRF-, connective tissue activating peptide III (CTAP III)-, and IL-3-induced histamine release from human basophils. We determined that IL-8 itself, at concentrations between 10(-7) to 10(-11) M, does not release histamine from basophils, although positive results are observed in two of 26 subjects at 10(-7) M. Unfractionated (crude) HRF released histamine in 25 of 26 donors, in the range of 6.7% to 100% of total basophil histamine stores. When basophils were preincubated with IL-8 (10(-7) to 10(-11) M) for 5 min, followed by a 40-min incubation with HRF, histamine release was significantly inhibited in 20 of 25 donors. Inhibition was observed at as little as 10(-11) M IL-8, with maximal inhibition being attained at 10(-9) M. HRF-containing supernatants contain a mixture of different histamine-releasing moieties. To better define which factor(s) may be inhibited by IL-8, fractionated supernatants, purified CTAP III, and IL-3 were studied. Histamine release produced by two different HRF-containing chromatographic fractions (HRFvoid and HRFpeak 2) and purified CTAP-III (5 micrograms/ml) was inhibited by IL-8 in 10 of 12 donors, three of three donors, and seven of 10 donors, respectively. IL-3 (5000 U/ml)-dependent histamine release was inhibited by IL-8 in all subjects tested. In contrast, histamine release by anti-IgE and FMLP was not affected by IL-8. Thus, IL-8 appears to be an inhibitor of cytokine-like molecules that induce histamine release and may represent the previously described 8-kDa histamine release inhibitory factor present in mononuclear cell supernatants.  相似文献   

7.
Human lung macrophages obtained from surgical specimens spontaneously secreted a factor(s) (which we term macrophage factor) during 24-hr culture that induced calcium-dependent histamine release from human basophils and lung mast cells. Macrophage factor induced noncytotoxic histamine release from purified (85%) basophils. The kinetics of release were relatively slow and similar to that of anti-IgE. We performed a series of experiments to test the IgE dependence of macrophage factor-induced release. Preincubation of basophils with anti-IgE in calcium-free medium resulted in complete desensitization to macrophage factor-induced histamine release (i.e., when calcium and macrophage factor were added to the basophils, no histamine release occurred), and preincubation with macrophage factor in calcium-free medium resulted in partial desensitization to anti-IgE-induced histamine release. Pretreatment of basophils with pH 3.9 lactic acid buffer, which dissociates basophil IgE from its receptors, markedly reduced the capacity of basophils to release histamine in response to macrophage factor. Basophils that were incubated with IgE myeloma (but not with IgG) after lactic acid treatment partially or completely regained their capacity to release histamine in response to macrophage factor. Fluid-phase IgE myeloma (15 micrograms/ml) (but not IgG) inhibited basophil histamine release induced by two macrophage-derived supernatants, whereas IgE myeloma (200 micrograms/ml) did not inhibit release due to other supernatants. IgE-affinity columns removed the histamine-releasing activity of five macrophage-derived supernatants, and IgG-affinity columns had similar effects. However, neither affinity column removed the histamine-releasing activity of three other macrophage-derived supernatants. On Sephadex G-75 chromatography, nearly all of the histamine-releasing activity migrated as single peak with an apparent m.w. of 18,000. These results suggest that, although macrophage factor are heterogeneous, they are related, as they are a IgE-dependent factors that induce histamine release by interacting with cell surface IgE. These macrophage factors may be responsible for stimulation of basophil/mast cell mediator release in chronic allergic reactions.  相似文献   

8.
A histamine-releasing factor from activated human mononuclear cells   总被引:10,自引:0,他引:10  
Human mononuclear cells activated by streptokinase-streptodornase have been shown to elaborate a factor capable of releasing histamine from human basophils. We have developed reproducible methods for its production in large quantities by using cells obtained from leukapheresis packs, by detection utilizing donor basophils known to release well with anti IgE, and by quantitation of histamine by the radioenzyme method. Human histamine-releasing factor (HRF) gave a single peak upon gel filtration with an estimated m.w. of 32,000; SDS gel electrophoresis revealed a single major band as seen at m.w. 30,000. HRF can be resolved into at least two forms separable by ion-exchange chromatography on QAE Sephadex, and two peaks of activity were obtained by chromatofocusing or isoelectric focusing in gels at pH 6.9 and between 7.4 and 8.3. This factor represents an important potential link between cellular immunity and immediate hypersensitivity.  相似文献   

9.
Platelet activation may occur during immunoglobulin E antibody (IgE)-mediated reactions. In these studies, we confirm that platelet-derived supernatants (PDS) induce histamine release from human mixed leukocytes containing basophils, one of the initial target cells in IgE-mediated reactions. In extending this observation, we have shown that this PDS-induced histamine release is both temperature- and calcium-dependent. Kinetic studies of release induced by PDS indicate that release is more rapid than that associated with IgE-dependent mechanisms. This platelet-derived, histamine-releasing activity is produced by platelet stimulation with collagen (5 micrograms/ml) and acetylglyceryl ether phosphorylcholine (10(-7)), as well as thrombin (1 U/ml). Initial characterization has shown that it is stable to acid and to freeze-thawing but not to boiling for 10 min. In addition, although this histamine-releasing activity is nondialyzable (i.e., greater than 3500 m.w.), it cannot be attributed to platelet factor 4. Thus, platelets, once activated, can produce a soluble substance or substances which can initiate basophil-mediated reactions, further suggesting that platelet activation can enhance allergic and inflammatory reactions.  相似文献   

10.
Human serum activated with zymosan generates a factor (C5a) that releases histamine from autologous basophils. Previously we have presented evidence that this mechanism for C5a-induced release differs from IgE-mediated reactions. The effect of several pharmacologic agents known to alter IgE-mediated release was studied to determine whether they have a similar action on serum-induced release. Deuterium oxide (D2O), which enhances allergic release, inhibited in a concentration-dependent fashion the serum-induced reaction at incubation temperatures of 25 and 32 degrees C. The colchicine-induced inhibition was not reversed by D2O. Cytochalasin B, which gives a variable enhancement of IgE-mediated release, had a marked enhancing effect on the serum-induced reaction in all subjects tested. The following agents known to inhibit the IgE-mediated reaction also inhibited serum-induced release at 25 degrees C: colchicine, dibutyryl cyclic AMP, aminophylline, isoproterenol, cholera toxin, chlorphenesin, diethylcarbamazine, and 2-deoxy-D-glucose. These results suggest that the serum-induced release is modulated by intracellular cyclic AMP, requires energy, and is enhanced by the disruption of microfilaments. The lack of an effect by D2O would suggest that microtubular stabilization is not required. The data can be interpreted to indicate that IgE- and C5a-mediated reactions diverge at a late stage in the histamine release pathway.  相似文献   

11.
Platelet-activating factor (PAF) is a lipid mediator able to induce a variety of inflammatory processes in human peripheral blood cells. We have investigated the effect of PAF on the release of chemical mediators from human basophils of allergic and normal donors. PAF (10 nM to 1 microM) caused a concentration-dependent, noncytotoxic histamine release (greater than or equal to 10% of total) in 27 of 44 subjects tested (24 atopic and 20 nonatopic donors). The release process was either very rapid (t1/2 approximately equal to 10 s) or quite slow (t 1/2 approximately equal to 10 min), temperature- and Ca2(+)-dependent (optimal at 37 degrees C and 5 mM Ca2+). Coincubation of PAF with cytochalasin B (5 micrograms/ml) enhanced the release of histamine induced by PAF and activated the release process in most donors (42 of 44). Atopics did not release significantly more histamine than normal subjects, and the percentage of PAF responders (greater than or equal to 10% of total) was nearly the same in the two groups. Histamine release was accompanied by the synthesis and release of leukotriene C4, although this lagged 1 to 2 min behind histamine secretion. Lyso-PAF (100 nM to 10 microM), alone or together with cytochalasin B, did not release significant amounts of histamine. The release of histamine activated by PAF was inhibited by the specific PAF receptor antagonist, L-652,731, with an IC50 of 0.4 microM. There was a partial desensitization to PAF when the cells were preincubated with PAF (100 nM to 1 microM) for 2 min in the absence of Ca2+, whereas the cells remained responsive to anti-IgE (0.1 micrograms/ml). If neutrophils were removed from the basophil preparation by a Percoll gradient or a countercurrent elutriation technique, there was a significant decrease in PAF-induced histamine release. PAF (1 microM) was able to induce a very rapid, transient rise (peak less than 10 s) in [Ca2+]i in purified basophils analyzed by digital video microscopy. Finally, among human histamine-containing cells, the basophils are unique in degranulating following a PAF challenge. Mast cells from human lung, skin, or uterus failed to respond to PAF (10 nM to 1 microM) regardless of the presence or absence of cytochalasin B (5 micrograms/ml). Our results demonstrate that PAF is able to induce the release of inflammatory mediators from human basophils, and that neutrophils can influence this response. It is suggested that PAF-induced basophil activation can play a role in the pathogenesis of allergic disorders.  相似文献   

12.
Human neutrophil-derived histamine-releasing activity (HRA-N) was partially purified and found to contain a heat-stable 1400 to 2300-Da fraction which caused human basophils and rat basophil leukemia cells (RBL) to degranulate. The capacity of HRA-N to activate basophils was not related to the gender or atopic status of the basophil donor, but was related to anti-IgE responsiveness. Several lines of evidence suggest that HRA-N and anti-IgE induce histamine release through distinctly different mechanisms: 1) the time course of HRA-N- and anti-IgE-induced RBL histamine release are different; 2) HRA-N causes histamine release from RBL with and without surface-bound IgE; 3) lactic acid stripping of IgE from human basophils reduces anti-IgE-induced histamine release, but has no consistent effect on HRA-N-induced histamine release; and 4) passive sensitization of lactic acid-stripped basophils with IgE restores anti-IgE-induced histamine release but not HRA-N-induced histamine release. Several histamine-releasing factors (HRF) were compared with HRA-N. Human nasal HRF (HRF-NW, crude and partially purified fractions of 15 to 30, 3.5 to 9, and less than 3.5 kDa), like HRA-N, caused equal histamine release from both native and IgE-sensitized RBL. However, only the 15- to 30-kDa fraction caused histamine release from human basophils in the doses tested. Mononuclear cell HRF (HRF-M, crude and a partially purified 25 kDa Mr fraction) and platelet HRF (HRF-P, crude preparation) failed to cause histamine release from either native or IgE-sensitized RBL but caused 30 +/- 5.5% and 20 +/- 10% net histamine release from human basophils, respectively. HRA-N and HRF-NW were both stable to boiling. These data, taken together, suggest that the capacity of HRA-N to induce RBL and human basophil histamine release and of HRF-NW to stimulate RBL histamine release is independent of IgE. The data further suggest that HRA-N and HRF-NW can be distinguished by size, and that they both differ from mononuclear cell HRF and platelet HRF. Thus, it appears that inflammatory cells generate a family of distinct HRF.  相似文献   

13.
Histamine release occurs during the late phase allergic reaction concomitantly with neutrophil (PMN) infiltration. To determine whether PMN might release a factor capable of causing histamine release, supernatants generated by incubating human PMN in the presence or absence of specific activators were added to rat basophilic leukemia cells (RBL) and histamine release was measured. PMN supernatants from 17 of 21 donors induced noncytotoxic histamine release. Neutrophil-derived histamine-releasing activity, termed HRA-N, was dose-dependent and supernatants from greater than or equal to 10(7) PMN/ml caused 6 to 27% net histamine release from RBL. PMN supernatants induced histamine release as effectively as did intact PMN cocultured with RBL. The capacity of various donors to generate HRA-N was not related to atopic status or gender but was inversely related to the proportion of eosinophils (EOS) contaminating the PMN isolate (the larger the proportion of EOS, the lower the histamine release). Addition of EOS to PMN during the generation of HRA-N completely inhibited histamine-releasing activity. HRA-N was not released from mononuclear cells or platelets contaminating the PMN preparation. HRA-N release was not increased by the presence of either serum-treated zymosan or phorbol myristate acetate, agents that caused dose-related release of PMN granule enzymes. Indeed, HRA-N was released from unstimulated PMN in the complete absence of granule enzyme release. HRA-N release was detectable by 15 min and the majority of release occurred between 45 and 60 min of incubation. Thus, the data indicate that HRA-N is released spontaneously from human PMN and that HRA-N release is independent of primary or secondary PMN granule release. It is attractive to suggest that release of HRA-N by PMN might act to recruit mast cells or basophils into participating in acute inflammatory reactions.  相似文献   

14.
mAb were selected that inhibited IgE-mediated histamine release from human basophils. The two mAb, HB 9AB6 and HB 10AB2, are of the IgG1 subclass and have a 50% inhibitory concentration of 0.16 to 1.1 micrograms/ml. The mAb required several hours of incubation with the basophils at 37 degrees C to induce maximum inhibition. Neither mAb directly released histamine from human basophils nor did they inhibit release induced by formylmethionine tripeptide, calcium ionophore A23187, or PMA. There was little inhibition of IgE-mediated release when the cells were preincubated with the mAb at 4 degrees C. By FACS analysis the 2 mAb bound to all peripheral blood leukocytes and immunoprecipitated a approximately 200-kDa protein from peripheral blood leukocytes and several cell lines of human origin. In binding studies and by sequential immunoprecipitation the 2 mAb and a known anti-CD45 mAb bound to the same protein. However, the mAb recognized different epitopes. Therefore, mAb to the CD45 surface Ag, a membrane protein tyrosine phosphatase, inhibits IgE-receptor mediated histamine release from human basophils. The data suggest a link between protein tyrosine phosphorylation and high affinity IgE receptor-mediated signal transduction in human basophils.  相似文献   

15.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

16.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

17.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   

18.
Studies of IgE-dependent histamine releasing factors: heterogeneity of IgE   总被引:18,自引:0,他引:18  
Nasal lavage fluids from unstimulated individuals contain a histamine-releasing factor (HRF) similar to those which we have previously described from macrophages, platelets, and from blister fluids obtained during the late cutaneous reaction. The nasal HRF was partially purified by ion-exchange chromatography and gel filtration. Although some m.w. heterogeneity was observed, the majority of the HRF eluted at an apparent m.w. range of 15,000 to 30,000. This partially purified HRF induced histamine release from basophils of certain individuals. Histamine release occurred via a mechanism which is IgE-dependent in that: basophils desensitized by exposure to anti-IgE in the absence of calcium no longer respond to HRF, and desensitization with HRF reduces responsiveness to anti-IgE; and removal of IgE from the basophil surface by using lactic acid renders cells unresponsive to HRF. We have further defined this IgE dependence and have shown that the reason that only selected basophil donors respond to HRF is due to a previously unrecognized, functional heterogeneity of IgE. Thus, passive sensitization using sera from responders restored the responsiveness of acid-stripped basophils and conferred responsiveness to basophils of a nonresponder with naturally unoccupied IgE receptors. Sera from nonresponders failed to do this even though similar numbers of IgE molecules were put onto the basophil surface in each case. This property of responder sera was due to IgE because both heating sera at 56 degrees C for 2 hr and passage of sera over anti-IgE-Sepharose (which removes greater than 90% of the IgE) markedly reduced the ability of sera to induce responsiveness, and because an excess of either purified IgE myeloma or purified penicillin-specific IgE antibody from a nonresponder competitively inhibited the ability of IgE from responder sera to induce responsiveness to HRF. We conclude that nasal lavage fluids contain an HRF which induces basophil histamine release in a specific, IgE-dependent fashion but only from individuals with the appropriate type of IgE. Because we have shown that basophils are recruited into the nose during the late-phase reaction, we suggest that nasal HRF may induce these cells to release histamine and other mediators which could contribute to the symptomatology of the late-phase reaction.  相似文献   

19.
We have examined the effects of cyclosporin A (CsA) and a series of CsA analogs that bind with decreasing affinity to cyclophilin, to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4; LTC4) mediators of inflammatory reactions from human basophils. CsA (8 to 800 nM) concentration-dependently inhibited (5 to 60%) histamine release from peripheral blood basophils challenged with anti-IgE. CsA was more potent (92.6 +/- 1.8 vs 59.1 +/- 4.5%; p less than 0.001) and, at low concentrations, more effective when the channel-operated influx of Ca2+ was bypassed by the ionophore A23187 (IC40 = 24.1 +/- 3.9 vs 105.5 +/- 22.2 nM; p less than 0.05). CsA had no effect on the release of histamine caused by phorbol myristate and bryostatin 1 that activate different isoforms of protein kinase C. Inhibition of histamine release from basophils challenged with anti-IgE was not abolished by washing (three times) the cells before anti-IgE challenge. CsA also inhibited the de novo synthesis of LTC4 from basophils challenged with anti-IgE. The inhibitory effect of CsA was very rapid, and the drug, added from 1 to 10 min during the reaction, inhibited the ongoing release of histamine caused by anti-IgE and by A23187. The experiments with CsA analogs (CsG, CsC, CsD, and CsH) showed that CsH, which has an extremely low affinity for cyclophilin, has no effect on basophil mediator release. In addition, there is a significant correlation between the concentrations of CsA, G, C, and D that inhibited by 30% the histamine release induced by anti-IgE (r = 0.99; p less than 0.001) and by A23187 (r = 0.87; p less than 0.001) and their affinity for cyclophilin.  相似文献   

20.
Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX greater than forskolin greater than PGE2 greater than isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号