共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of auxin by 1-mm slices of corn (Zea mays L.) coleoptiles, a tissue known to transport auxin polarly, depends on the pH of the medium. Short-term uptake of indole-3-acetic acid (IAA) in coleoptiles increases with decreasing pH of the buffer as would be expected if the undissociated weak acid, IAA·H, were more permeable than the auxin anion, IAA-, and IAA- accumulates in the tissues because of the higher pH of the cytoplasm. Although uptake of [3H]IAA is reduced in neutral buffers, it is greater than expected if it were limited to just the extracellular space of the tissue. The radioactivity accumulated by the tissue can be quantitatively extracted by organic solvents and identified as IAA by thin-layer chromatography. The tissue radioactivity is freely mobile and can efflux from the tissue. Thus these cells in pH 5 buffer are able to retain an average internal concentration of mobile IAA that is at least several times greater than the external concentration. A prominent feature of auxin uptake from acidic buffers is enhanced accumulation at high auxin concentration. This indicates that, in addition to fluxes of IAA·H, a saturable site is involved in auxin uptake. Whenever the auxin-anion gradient is directed outward, saturating the efflux of auxin anions increases accumulation. Furthermore, the observed slowing of short-term uptake of radioactive IAA by increasing concentrations of IAA or K+ indicates either an activation of the presumptive auxin leak or saturation of another carrier-mediated uptake system such as a symport of auxin anions with protons. By contrast in neutral buffers, effects of concentration on uptake rates disappear. This implies that at neutral pH the anion leak is decreased and influx depends on the symport. 相似文献
2.
Indole-3-acetic acid (IAA) promotes an increase in steady-state heat production by corn (Zea mays L.) coleoptile tissue; this increase is associated with an elevation in aerobic respiration rates. A detailed time dependence of the exothermic response to IAA was obtained using flow calorimetry. The latent period and magnitude of response were evaluated as a function of IAA concentration and pH. The data indicate that more than one response may occur. The optimal change in heat production was produced by an IAA concentration of 3·10-5 M. It was initiated within 5 min after the start of the IAA treatment, and reached a magnitude in excess of 25% of the tissue's basal heat production. Concentrations of IAA greater than 1·10-4 M resulted in diminished response(s), but the effect was strongly pH dependent. Several possibilities for the increased heat production triggered by IAA are discussed.Abbreviation IAA
indole-3-acetic acid 相似文献
3.
Two types of auxin-binding sites (sites I and II) in membranes from maize (Zea mays L.) coleoptiles were characterized. Site I was a protein with a relative molecular mass of 21 000, and the distribution of site I protein on sucrose density gradient fractionation coincided with that of NADH-cytochrome-c reductase (EC 1.6.99.3), a marker enzyme of the endoplasmic reticulum. Immunoprecipitation and immunoblotting studies showed that the content of site I protein in maize coleoptiles was approx. 2 g·(g FW)-1. Site II occurred in higher-density fractions and also differed immunologically from site I. Site I was present at the early developmental stage of the coleoptile and increased only twice during coleoptile growth between day 2 and 4. Site II activity was low at the early stage and increased more substantially between day 3 and 4, a period of rapid growth of the coleoptile. Both sites decreased concurrently after day 4, followed by a reduction in the growth rate of the coleoptile. Coleoptiles with the outer epidermis removed showed a lower site I activity than intact coleoptiles, indicating that site I was concentrated in the outer epidermis. Site II, in contrast, remained constant after removal of the outer epidermis. The results indicate that site I is not a precursor of site II and that the two sites are involved in different cellular functions.Abbreviations FW
fresh weight
-
M
r
relative molecular mass
- 1-NAA
1-naphthaleneacetic acid
- 2-NAA
2-naphthaleneacetic acid
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 相似文献
4.
5.
Isolated, 2.5-mm-long coleoptile tips of Zea mays L. cv. Anjou 210 were analyzed for diffusible and tissue-extractable indole-3-acetic acid (IAA) in comparison with the level of base-labile conjugates at various times after excision. The results indicate that base-labile conjugates of IAA do not serve as major sources of free IAA in maize coleoptile tips.Abbreviations IAA
indole-3-acetic acid
- TLC
thin-layer chromatography 相似文献
6.
Auxin binding onto membrane fractions of primary roots of maize seedlings has been demonstrated using naphth-1yl-acetic acid (NAA) and indol-3yl-acetic acid (IAA) as ligands. This binding is compared with the already well characterized interaction between auxins and coleoptile membranes. The results indicate that while kinetic parameters are of the same order for root and coleoptile binding, a number of differences occur with respect to location in cells and relative affinity. The possible significance of the existence of such binding sites in root cells is discussed in relation to auxin action.Abbreviations 4-Cl-PA
4-chlorophenoxyacetic acid
- EDTA
ethylene diamine tetracetic acid
- IAA
indol-3yl-acetic acid
- MCPA
2-methyl-4-chlorophenoxyacetic acid
- NAA
naphth-1yl-acetic acid
- 2-NAA
naphth-2yl-acetic acid
- Tris
2-amino-2-(hydroxymethyl) propane-1,3 diol
- TIBA
2,3,5 triiodobenzoic acid
- NPA
naphthylphthalamic acid
- PCIB
4-chlorophenoxyisobutyric acid
- PCPP
4-chlorophenoxyisopropionic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid 相似文献
7.
In-vitro translation products of polyadenylated RNA from untreated and indole-3-acetic acid (IAA)-treated elongating sections of maize (Zea mays L.) coleoptiles were analyzed by twodimensional polyacrylamide gel electrophoresis. Treatment with IAA results in an increased amount of at least four in-vitro translation products. The amounts of two of these translation products are increased within 10 min of IAA treatment.Abbreviation IAA
indole-3-acetic acid 相似文献
8.
Naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, binds with high affinity to membrane preparations from callus and cell suspension cultures derived from Nicotiana tabacum (K
d
approx. 2·10–9 M). The concentration of membrane-bound binding sites is higher in cell suspension than in callus cultures. The binding of NPA to these sites seems to be a simple process, in contrast to the binding of the synthetic auxin naphthylacetic acid (1-NAA) to membrane preparations from callus cultures, which is more complex (A.C. Maan et al., 1983, Planta 158, 10–15). Naphthylacetic acid, a number of structurally related compounds and the auxin-transport inhibitor triiodobenzoic acid were all able to compete with NPA for the same binding site with K
d
values ranging from 10–6 to 10–4 M. On the other hand, NPA was not able to displace detectable amounts of NAA from the NAA-binding site. A possible explantation is the existence of two different membrane-bound binding sites, one exclusively for auxins and one for NPA as well as auxins, that differ in concentration. The NPA-binding site is probably an auxin carrier.Abbreviations 1-NAA
1-Naphthylacetic acid
- 2-NAA
2-Naphthylacetic acid
- NPA
N-1-Naphthylphthalamic acid 相似文献
9.
Monica Mattana Immacolata Coraggio Ida Brambilla Alcide Bertani Remo Reggiani 《Planta》1996,199(1):74-78
Ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) is the last enzyme involved in the pathway of nitrate assimilation in higher plants. This paper describes the synthesis and expression of the enzyme in anaerobic coleoptiles of rice (Oryza sativa L.) and its regulation by exogenous nitrate. The activity of Fd-GOGAT was strongly inhibited by cycloheximide between 4 and 9 d of anaerobic germination. The addition of nitrate slightly increased, in the first 5 h, the specific activity of Fd-GOGAT as well as the amount of a 160-kDa protein specifically immunoprecipitated with anti-Fd-GOGAT serum. Northern blot analysis, performed with a specific riboprobe, showed the presence of mRNA of the expected size and the inductive effect of nitrate. The role of Fd-GOGAT is discussed in relation to the anaerobic assimilation of nitrate by rice coleoptiles.Abbreviations CHX
cycloheximide
- Fd
ferredoxin
- GOGAT
glutamate synthase
- GS
glutamine synthetase
- NiR
nitrite reductase
- NR
nitrate reductase
The authors wish to thank Dr. J. Turner (Rothamsted Experimental Station, Harpenden, UK) for providing Fd-GOGAT antibody and Dr. H. Sakakibara (Nagoya University, Nagoya, Japan) for Fd-GOGAT clone. This research was supported by the National Research Council of Italy, special project RAISA, sub-projekt N. 2, paper N. 2174. 相似文献
10.
The transport and metabolism of indole-3-acetic acid (IAA) was studied in etiolated lupin (Lupinus albus L, cv. Multolupa) hypocotyls, following application of dual-isotope-labelled indole-3-acetic acid, [5-3H]IAA plus [1-14C]IAA, to decapitated plants. To study the radial distribution of the transported and metabolized IAA, experiments were carried out with plants in which the stele was separated from the cortex by a glass capillary. After local application of labelled IAA to the cortex, radioactivity remained immobilized in the cortex, near the application point, showing that polar transport cannot occur in the outer tissues. However, following application of IAA to the stele, radioactivity appeared in the cortex in those hypocotyl sections below the first 1 cm (in which the capillary was inserted), and the basipetal IAA movement was similar to that observed after application of IAA to the complete cut surface. In both assays, longitudinal distribution of 14C and 3H in the stele outside the first 1 cm was positively correlated with that of cortex, indicating that there was a lateral migration of IAA from the transport pathway (in the stele) to the outer tissues and that this migration depended on the amount of IAA in the stele. Both tissues (stele and cortex) exhibited intensive IAA metabolism, decarboxylation being higher in the stele than in the cortex while IAA conjugation was the opposite. Decapitation of the seedlings caused a drastic reduction of hypocotyl growth in the 24 h following decapitation, unless the hypocotyls were treated apically with IAA. Thus, exogenous IAA, polarly transported, was able to substitute the endogenous source of auxin (cotyledons plus meristem) to permit hypocotyl growth. It is proposed that IAA escapes from the transporting cells (in the stele) to the outer tissues in order to reach the growth-responsive cells. The IAA metabolism in the outer tissues could generate the IAA gradient necessary for the maintenance of its lateral flow, and consequently the auxin-induced cell elongation. 相似文献
11.
M. A. Venis 《Planta》1977,134(2):145-149
Two auxin analogues have been tested as affinity labels for auxin binding sites in coleoptile membranes of Zea mays L. Reacting the membranes at pH 8–9 with the diazonium salt of CAPA (2-chloro-4-aminophenoxyacetic acid) reduces their subsequent ability to bind NAA(1-naphthylacetic acid). Diazo-Chloramben (2,5-dichloro-3-aminobenzoic acid) is also effective in inhibiting NAA binding capacity and this inhibition is largely independent of reaction pH over the range pH 6–9. Similar experiments with sulphydryl reagents have shown that reaction of the membranes with p-mercuribenzoate (PMB) strongly inhibits subsequent auxin binding activity. Prior addition of NAA protects the binding sites against the action of diazo-Chloramben or PMB when the reactions are carried out at pH 6. From these results and from other considerations, several of the amino acid residues in the binding site environment have been tentatively assigned.Abbreviations CAPA
2-chloro-4-aminophenoxyacetic acid
- DTNB
5,5-dithiobis (2-nitrobenzoic acid)
- DTT
dithiothreitol
- GSH
reduced from of glutathione
- NAA
1-naphthylacetic acid
- PMB
p-mercurbenzoate 相似文献
12.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS
glutamine synthetase
- GS1
cytosolic glutamine synthetase
- GS2
platidic glutamine synthetase
We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586. 相似文献
13.
Branches were cut from young beeches (Fagus sylvatica L.) at various stages of the annual cycle and [3H]indole-3-acetic acid (0.35 nmol) was applied to the whole surface of the apical section of each branch, just below the apical bud. The labelled pulse (moving auxin) and the following weakly radioactive zone (auxin and metabolites retained by the tissues) were localized by counting: microautoradiographss were made using cross sections from these two regions. During the second fortnight of April, auxin was transported by nearly all the cells of the young primary shoot, but the label was more concentrated in the vascular bundles. Auxin transport became the more localized: the cortical parenchyma appeared to lose its ability to transport the hormone (end of April), followed in turn by the pith parenchyma (May). Polar auxin movement at that time was limited to the outer part of the bundle (cambial zone and phloem) and to the inner part (protoxylem parenchyma). Later protoxylem parenchyma ceased to carry auxin. During the whole period of cambial activity, auxin was transported and retained mainly by the cambial zone and its recent derivatives. In September, before the onset of dormancy, and in February, at the end of the resting period, the transport pathways and retention sites for auxin were mainly in the phloem, where sieve tubes often completely lacked radiolabel. When cambial reactivation occurred in the one-year shoot, auxin was mainly carried and retained again in the cambial zone and differentiating derivatives.Abbreviation IAA
indole-3-acetic acid 相似文献
14.
Several properties of a 43-kilodalton (kDa) auxin-binding protein (ABP) having 22-kDa subunits are shared by a class of auxin binding designated Site I. The spatial distribution of the ABP in the maize (Zea mays L.) mesocotyl corresponds with the distribution of growth induced by naphthalene-1-acetic acid and with the distribution of Site I binding as previously shown by J.D. Walton and P.M. Ray (1981, Plant Physiol. 68, 1334–1338). The greatest abundance of both ABP and Site I activity is at the apical region of the mesocotyl. The ABP and Site I activity co-migrate in isopycnic centrifugation with the endoplasmic-reticulum marker, cytochrome-c reductase. Red light, at low and high fluence, far-red and white light were used to alter the elongation rate of apical 1-cm sections of etiolated maize mesocotyls, the amount of auxin binding, and the abundance of the ABP. Relative changes in auxin binding and the ABP were correlated, but the growth rate was not always correlated with the abundance of the ABP.Abbreviations ABP
auxin-binding protein
- ER
endoplasmic reticulum
- FR
far-red light
- kDa
kilodalton
- NAA
naphthalene-1-acetic acid
- PM
plasma membrane
- R
red light
- SDS-PAGE
sodium dodecylsulfate-polyacrylamide gel electrophoresis 相似文献
15.
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft. 相似文献
16.
To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth
in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels
of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic
acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use
of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant,
resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced
growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to
microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon
its inhibition of efflux of IAA from the cells.
This research was supported by National Science Foundation grant No. DMB 8515925. The careful assistance of Laurie Brulport
is gratefully acknowledged. 相似文献
17.
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA
abscisic acid
- IAA
3-indoleacetic acid 相似文献
18.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA
indol-3yl-acetic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid
- NAA
1-naphthaleneacetic acid
- NPA
N-1-naphthylphthalamic acid
- TIBA
2,3,5-triiodobenzoic acid 相似文献
19.
In Avena coleoptile segments a decrease of cytoplasmic pH activates energy-dependent H+ extrusion into the apoplast, thereby triggering extension growth. This sequence of events cannot be inhibited by cycloheximide and is induced by the following conditions and compounds. (i) A short anaerobic treatment of coleoptile segments results in the formation of lactic acid and an intracellular decrease of pH. For a period of 20 min after transfer to normal air, the growth rate is up to six times higher than the rate before anaerobiosis. (ii) Similarly, incubation of segments with CN– (0.1 mM) in the presence of oxygen causes and accumulation of lactic acid and a fall in cell-sap pH. After removing CN– a growth burst occurs. (iii) Higher concentrations of permeable acids (10 mM in buffer pH 5.8) induce extension growth. This growth is O2-dependent and therefore differs from the acid growth, which can be triggered under anaerobic conditions by acid buffers of pH5 via the direct increase of cell-wall plasticity. (iv) A short application of CO2-saturated buffer (pH 5.8) causes CO2-induced elongation growth; after a 3-min pulse the growth rate is enhanced for about 15 min. (v) Lipophilic esters of acetic acid or propionic acid, such as naphthylacetate, naphthylpropionate, phenylacetate, benzylacetate induce elongation growth. These compounds, when taken up into the cell, are hydrolized by esterases; the acids released lower the cytoplasmic pH (shown by the pH indicator, fluorescein). The highest esterase activity was found in a microsomal membrane fraction of coleoptiles. While the carboxyester-induced extension growth is completely inhibited under anoxia, the initial acidification of the bathing solution can still be observed. This decrease in external pH is obviously the result of ester hydrolysis, caused by damaged cells, and is not the result of pH changes within the cell-wall compartment. It is suggested that a fast uptake of carboxyesters and the shift in equilibrium caused by their internal hydrolysis leads to a continuous formation of acids which lowers the cytoplasmic pH and activates the ATP-dependent H+ extrusion. In most experiments fusicoccin (a diacetic acid ester) acts similarly to naphthylacetate and the other carboxyesters, although quantitative differences exist. Therefore, it is possible that fusicoccin is effective partly on the basis of its ester characteristic. The effects observed are discussed with regard to the very narrow pH optimum of plasma-membrane H+-ATPases exhibiting their highest levels of activity at pH 6.5 (Hager and Biber 1984, Z. Naturforsch. C 39, 927–937).Abbreviations CHM
cycloheximide
- DMO
dimethadione (5.5-dimethyl-2,4-oxazolidinedione)
- FC
fusicoccin
- IAA
indole-3-acetic acid
- Mes
2-(N-morpholino)ethanesulfonic acid
- NA
(or )-naphthylacetate (acetic acid-1(or-2-)naphthylester)
- NAA
(or )-naphthaleneacetic acid
- PA
phenylacetate (acetic acid phenylester) 相似文献
20.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA
indol-3yl-acetic acid
- DMO
5,5-dimethyloxazolidine-2,4-dione
- NPA
N-1-naphthylphthalamic acid
- PAA
phenylacetic acid
- TIBA
2,3,5-triiodobenzoic acid 相似文献