首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
Quail-chick chimeras have been used extensively in the field of developmental biology. To detect quail cells more easily and to detect cellular processes of quail cells in quail-chick chimeras, we generated four monoclonal antibodies (MAb) specific to some quail tissues. MAb QCR1 recognizes blood vessels, blood cells, and cartilage cells, MAb QB1 recognizes quail blood vessels and blood cells, and MAb QB2 recognizes quail blood vessels, blood cells, and mesenchymal tissues. These antibodies bound to those tissues in 3-9-day quail embryos and did not bind to any tissues of 3-9-day chick embryos. MAb QSC1 is specific to the ventral half of spinal cord and thymus in 9-day quail embryo. No tissue in 9-day chick embryo reacted with this MAb. This antibody binds transiently to a small number of brain vesicle cells in developing chick embryo as well as in quail embryo. A preliminary application of two of these MAb, QCR1 and QSC1, on quail-chick chimeras of neural tube and somites is reported here.  相似文献   

2.
3.
Developmental fates of cells emigrating from the primitive streak were traced by a fluorescent dye Dil both in chick and in quail embryos from the fully grown streak stage to 12-somite stage, focusing on the development of mesoderm and especially on the timing of ingression of each level of somitic mesoderm. The fate maps of the chick and quail streak were alike, although the chick streak was longer at all stages examined. The anterior part of the primitive streak predominantly produced somites. The thoracic and the lumbar somites were shown to begin to ingress at the 5 somite-stage and 10 somite-stage in a chick embryo, and 6 somite-stage and 9 somite-stage in a quail embryo, respectively. The posterior part of the streak served mainly as the origin of more lateral or extra embryonic mesoderm. As development proceeded, the fate of the posterior part of the streak changed from the lateral plate mesoderm to the tail bud mesoderm and then to extra embryonic, allantois mesoderm. The fate map of the primitive streak in chick and quail embryo presented here will serve as basic data for studies on mesoderm development with embryo manipulation, especially for transplantation experiments between chick and quail embryos.  相似文献   

4.
The vitamin A‐deficient (VAD) early avian embryo has a grossly abnormal cardiovascular system that is rescued by treating the embryo with the vitamin A‐active form, retinoic acid (RA). Here we examine the role of N‐cadherin (N‐cad) in RA‐regulated early cardiovascular morphogenesis. N‐cad mRNA and protein are expressed globally in the presomite through HH14 normal and VAD quail embryos. The expression in VAD embryos prior to HH10 is significantly higher than that in normal embryos. Functional analyses of the N‐cad overproducing VAD embryos reveal N‐cad involvement in the RA‐regulated cardiovascular development and suggest that N‐cad expression may be mediated by Msx1. We provide evidence that in the early avian embryo, endogenous RA is a negative physiological regulator of N‐cad. We hypothesize that a critical endogenous level of N‐cad is needed for normal early cardiovascular morphogenesis to occur and that this level is ensured by stage‐specific, developmentally regulated RA signaling.  相似文献   

5.
Vitamin A‐deficient (VAD) quail embryos lack the vitamin A‐active form, retinoic acid (RA) and are characterized by a phenotype that includes a grossly abnormal cardiovascular system that can be rescued by RA. Here we report that the transforming growth factor, TGFβ2 is involved in RA‐regulated cardiovascular development. In VAD embryos TGFβ2 mRNA and protein expression are greatly elevated. The expression of TGFβ receptor II is also elevated in VAD embryos but is normalized by treatment with TGFβ2‐specific antisense oligonucleotides (AS). Administration of this AS or an antibody specific for TGFβ2 to VAD embryos normalizes posterior heart development and vascularization, while the administration of exogenous active TGFβ2 protein to normal quail embryos mimics the excessive TGFβ2 status of VAD embryos and induces VAD cardiovascular phenotype. In VAD embryos pSmad2/3 and pErk1 are not activated, while pErk2 and pcRaf are elevated and pSmad1/5/8 is diminished. We conclude that in the early avian embryo TGFβ2 has a major role in the retinoic acid‐regulated posterior heart morphogenesis for which it does not use Smad2/3 pathways, but may use other signaling pathways. Importantly, we conclude that retinoic acid is a critical negative physiological regulator of the magnitude of TGFβ2 signals during vertebrate heart formation.  相似文献   

6.
Peanut agglutinin (PNA) receptors are expressed in the caudal halves of sclerotomes in chick embryos after 3 days of incubation (stages 19–20 of Hamburger & Hamilton). The neural crest cells forming dorsal root ganglia (DRG) and motor nerves appear to avoid PNA positive regions and concentrate into rostral halves of sclerotomes. To investigate the role of PNA receptors in gangliogenesis and nerve growth, we examined PNA binding ability in quail sclerotomes and in chick-quail chimeric embryos made by transplanting quail somites to chick embryos, comparing the development of DRG, motor nerves and sclerotomes. PNA did not bind to any part of the somites of 4.5-day quail embryos, although dorsal root ganglia and motor nerves appeared only in the rostral halves of sclerotomes as in chick embryos. Moreover, in spite of no PNA binding ability of the transplanted quail somite in 4.5-day chick-quail chimeric embryos, DRG and motor nerves derived from chick tissues appeared only in the rostral halves of the sclerotomes derived from these somites. Thus, both quail and chick neural crest cells and motor nerves recognized the difference between the rostral and caudal halves of sclerotomes of quail embryos in the absence of PNA binding ability, indicating that PNA binding site on somite cells does not support the selective neural crest migration and nerve growth.  相似文献   

7.
During the early stages of body axis extension, retinoic acid (RA) synthesized in somites by Raldh2 represses caudal fibroblast growth factor (FGF) signaling to limit the tailbud progenitor zone. Excessive RA down-regulates Fgf8 and triggers premature termination of body axis extension, suggesting that endogenous RA may function in normal termination of body axis extension. Here, we demonstrate that Raldh2-/- mouse embryos undergo normal down-regulation of tailbud Fgf8 expression and termination of body axis extension in the absence of RA. Interestingly, Raldh2 expression in wild-type tail somites and tailbud from E10.5 onwards does not result in RA activity monitored by retinoic acid response element (RARE)-lacZ. Treatment of wild-type tailbuds with physiological levels of RA or retinaldehyde induces RARE-lacZ activity, validating the sensitivity of RARE-lacZ and demonstrating that deficient RA synthesis in wild-type tail somites and tailbud is due to a lack of retinaldehyde synthesis. These studies demonstrate an early uncoupling of RA signaling from mouse tailbud development and show that termination of body axis extension occurs in the absence of RA signaling.  相似文献   

8.
9.
We are using a monoclonal antibody, QH-1, as a label for angioblasts in quail embryos to study vascular development. Our previous experiments showed that major embryonic blood vessels, such as the dorsal aortae and posterior cardinal veins, develop from angioblasts of mesodermal origin that appear in the body of the embryo proper (Coffin and Poole: Development, 102:735-748, '88). We theorized that there are two separate processes for blood vessel development that occur in quail embryos. One mechanism termed "vasculogenesis" forms blood vessels in place by the aggregation of angioblasts into a cord. The other mechanism, termed "angiogenesis," is the formation of new vessels by sprouting of capillaries from existing vessels. Here we report the results of microsurgical transplantation experiments designed to determine the extent of cell migration taking place during blood vessel formation. Comparison of the chimeras to normal embryos suggests that the vascular pattern develops, in part, from the normally restricted points of entry of angioblasts into the head from the ventral and dorsal aortae. Transplantations of quail mesoderm (1-15 somite stage) into the head of 5-15 somite chick hosts resulted in extensive sprouting and in migration of single and small groups of angioblasts away from the graft sites. Transplantations into the trunk resulted in incorporation of the graft into the normal vascular pattern of the host. Lateral plate mesoderm was incorporated into the dorsal aortae and individual sprouts grew between somites and along the neural tube to contribute to the intersomitic and vertebral arteries, respectively.  相似文献   

10.
11.
Somites represent the first visual evidence of segmentation in the developing vertebrate embryo and it is becoming clear that this segmental pattern of the somites is used in the initial stages of development of other segmented systems such as the peripheral nervous system. However, it is not known whether the somites continue to contribute to the maintenance of the segmental pattern after the dispersal of the somitic cells. In particular, the extent to which cells from a single somite contribute to all of the tissues of a single body segment and the extent to which they mix with cells from adjacent segments during their migration is not known. In this study, we have replaced single somites in the future cervical region of 2-day-old chick embryos with equivalent, similarly staged quail somites. The chimerae were then allowed to develop for a further 6 days when they were killed. The cervical region was dissected and serially sectioned. The sections were stained with the Feulgen reaction for DNA to differentiate between the chick and quail cells. The results showed that the cells from a single somite remained as a clearly delimited group throughout their migration. Furthermore, the sclerotome, dermatome and myotome portions from the single somites could always be recognised as being separate from similar cells from other somites. The somitic cells formed all of the tissues within a body segment excluding the epidermis, notochord and neural tissue. There was very little mixing of the somitic cells between adjacent segments. The segmental pattern of the somites is therefore maintained during the migration of the somitic cells and this might be fundamental to a mechanism whereby the segmentation of structures, such as the peripheral nervous system, is also maintained during development.  相似文献   

12.
A wide range of non thermal biological effects of microwave radiation (MW) was revealed during the last decades. A number of reports showed evident hazardous effects of MW on embryo development in chicken. In this study, we aimed at elucidating the effects of MW emitted by a commercial model of GSM 900 MHz cell phone on embryo development in quails (Coturnix coturnix japonica) during both short and prolonged exposure. For that, fresh fertilized eggs were irradiated during the first 38 h or 14 days of incubation by a cell phone in "connecting" mode activated continuously through a computer system. Maximum intensity of incident radiation on the egg's surface was 0.2 μW/cm2.The irradiation led to a significant (p<0.001) increase in numbers of differentiated somites in 38-hour exposed embryos and to a significant (p<0.05) increase in total survival of embryos from exposed eggs after 14 days exposure. We hypothesized that observed facilitating effect was due to enhancement of metabolism in exposed embryos provoked via peroxidation mechanisms. Indeed, a level of thiobarbituric acid (TBA) reactive substances was significantly (p<0.05-0.001) higher in brains and livers of hatchlings from exposed embryos. Thus, observed effects of radiation from commercial GSM 900 MHz cell phone on developing quail embryos signify a possibility for non-thermal impact of MW on embryogenesis. We suggest that the facilitating effect of low doses of irradiation on embryo development can be explained by a hormesis effect induced by reactive oxygen species (ROS). Future studies need to be done to clarify this assumption.  相似文献   

13.
We describe here how the early limb bud of the quail embryo develops in the absence of retinoids, including retinoic acid. Retinoid-deficient embryos develop to about stage 20/21, thus allowing patterns of early gene activity in the limb bud to be readily examined. Genes representing different aspects of limb polarity were analysed. Concerning the anteroposterior axis, Hoxb-8 was up-regulated and its border was shifted anteriorly whereas shh and the mesodermal expression of bmp-2 were down-regulated in the absence of retinoids. Concerning the apical ectodermal genes, fgf-4 was down-regulated whereas fgf-8 and the ectodermal domain of bmp-2 were unaffected. Genes involved in dorsoventral polarity were all disrupted. Wnt-7a, normally confined to the dorsal ectoderm, was ectopically expressed in the ventral ectoderm and the corresponding dorsal mesodermal gene Lmx-1 spread into the ventral mesoderm. En-1 was partially or completely absent from the ventral ectoderm. These dorsoventral patterns of expression resemble those seen in En-1 knockout mouse limb buds. Overall, the patterns of gene expression are also similar to the Japanese limbless mutant. These experiments demonstrate that the retinoid-deficient embryo is a valuable tool for dissecting pathways of gene activity in the limb bud and reveal for the first time a role for retinoic acid in the organisation of the dorsoventral axis.  相似文献   

14.
A previous study revealed that segments of bowel grafted between the neural tube and somites of a younger chick host embryo would induce a unilateral increase in cellularity of the host's neural tube. The current experiments were done to test the hypotheses that muscle tissue in the wall of the gut is responsible for this growth-promoting effect and that the spinal cord enlargement is the result of a mitogenic action on the neuroepithelium. Fragments of skeletal (E8-15) or cardiac muscle (E4-14) were removed from quail embryos and grafted between the neural tube and somites of chick host embryos (E2). Both skeletal and cardiac muscle grafts mimicked the effect of bowel and induced an increase in cell number as well as a unilateral enlargement of the region of the host's neural tube immediately adjacent to the grafts. The growth-promoting effect of muscle-containing grafts was restricted to the neural tube itself and was not seen in proximate dorsal root or sympathetic ganglia. The action of the grafts of muscle was neither species- nor class-specific, since enlargement of the neural tube was observed following implantation of fetal mouse skeletal muscle into quail hosts. Grafts of skeletal muscle or gut increased the number of cells taking up [3H]thymidine in the host's neuroepithelium as early as 9 h following implantation of a graft. The increase in the number of cells entering the S phase of the cell cycle preceded the increase in cell number. These observations demonstrate that muscle-containing tissues can increase the rate of proliferation of neuroepithelial cells when these tissues are experimentally placed together.  相似文献   

15.
The distribution of the extracellular matrix (ECM) glycoprotein, tenascin, has been compared with that of fibronectin in neural crest migration pathways of Xenopus laevis, quail and rat embryos. In all species studied, the distribution of tenascin, examined by immunohistochemistry, was more closely correlated with pathways of migration than that of fibronectin, which is known to be important for neural crest migration. In Xenopus laevis embryos, anti-tenascin stained the dorsal fin matrix and ECM along the ventral route of migration, but not the ECM found laterally between the ectoderma and somites where neural crest cells do not migrate. In quail embryos, the appearance of tenascin in neural crest pathways was well correlated with the anterior-to-posterior wave of migration. The distribution of tenascin within somites was compared with that of the neural crest marker, HNK-1, in quail embryos. In the dorsal halves of quail somites which contained migrating neural crest cells, the predominant tenascin staining was in the anterior halves of the somites, codistributed with the migrating cells. In rat embryos, tenascin was detectable in the somites only in the anterior halves. Tenascin was not detectable in the matrix of cultured quail neural crest cells, but was in the matrix surrounding somite and notochord cells in vitro. Neural crest cells cultured on a substratum of tenascin did not spread and were rounded. We propose that tenascin is an important factor controlling neural crest morphogenesis, perhaps by modifying the interaction of neural crest cells with fibronectin.  相似文献   

16.
We studied the time course of appearance of CFUs (7-8 days old) in embryos of (C57B1/6 x CBA)F1 mice from the 8th day of embryonic development. Significant amounts of CFUs could be detected from the 10th day of development, initially in the body of the embryo from the stage of 30-33 pairs of somites, then in the yolk sac and still later, from the stage of about 40 pairs of somites, in liver anlage. CFUs could not be reliably detected until the 9th day of development either in the embryo itself or in the yolk sac. However, after incubation of nine day old embryos for four days in organ culture, such cultures contained CFUs. CFUs could be found in significant levels in embryos explanted from the embryos at the stage no earlier than 24 pairs of somites. When the yolk sac and the embryo were cultivated separately, CFUs could also be detected, however, the removal of liver primordium from the embryo did not influence the amount of CFUs in its body. CFUs were not found in cultures of liver primordium from nine day old embryos. Thus, we can detect pre-CFUs in 9 day old embryos at the stage 25-28 pairs of somites using the system of organ culture; at the same time CFUs cannot be found in intact embryos of the same age. These data provide evidence that before the establishment of liver hemopoiesis precursors of CFUs are located both in the yolk sac and in the embryo outside rudimentary liver. However, our results do not provide any data for the conclusion about the primary source of pre-CFUs in the mouse embryo.  相似文献   

17.
Neural crest cells appear transiently in early embryogenesis on the dorsal surface of the neural tube and subsequently migrate along specific pathways. Some migrate to between the neural tube and somites, aggregating to form the rudiments of dorsal root ganglia (DRG). The size of DRG at a given somite level is almost constant in all chick embryos. To determine the mechanisms controlling the size of DRG, we transplanted neural crest cells of 2.5-day-old quail embryos into 2.5-day-old chick embryos between the neural tube and the somites, and examined the size of DRG in these chimeric embryos with extra neural crest cells 2 days after the operation, when natural cell death in DRG had not yet occurred. The DRG on the operated side were composed of both chick and quail cells in various proportions. The cell numbers of these chimeric DRG were almost the same as those of the normal DRG on the opposite side. That is, there were significantly fewer chick cells in chimeric DRG than in DRG composed of only chick cells on the opposite unoperated side. This finding indicates that the size of DRG is not determined in migrating neural crest cells but is regulated by the circumstances.  相似文献   

18.
The notochord is the defining characteristic of the chordate embryo and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos, however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that, by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirrors that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed.  相似文献   

19.
In the research fields of experimental embryology, teratological testing, and developmental engineering in avian species, a knowledge of normal embryonic development is necessary so that research may be performed efficiently and precisely. A series of normal stages based on external appearance has been established in both chicken and quail embryos. Those based on skeletal features, however, have not been elucidated. The present study newly established a series of normal stages for the development of the Japanese quail embryo skeleton. This series is composed of 15 stages determined by observing the timing of chondrification and calcification of the skeleton every 24 h, from 3 to 17 days of incubation. Cartilage and ossified bones were stained blue and red with Alcian blue 8GX and alizarin red S, respectively. These skeletogenous stages of the Japanese quail embryo will be useful as a normal control not only in studies of experimental embryology, teratological testing, and developmental engineering, but also in the analysis of mutant embryos with skeletal abnormalities.  相似文献   

20.
Retinoic acid is a very potent teratogen and has also been implicated as an endogenous developmental signalling molecule in vertebrate embryos. One of the regions of the embryo reliably affected by exogenously applied RA is the hindbrain. In this paper, we describe in detail the hindbrain of Xenopus laevis embryos briefly treated with various levels of RA at gastrula stages. Such treatments lead to development of embryos with loss of anterior structures. In addition, RA has a general effect on rhombomere morphology and specific effects on the development of the anterior rhombomeres. This effect is demonstrated using neurofilament antibodies, HRP staining and in situ hybridisation using a probe for expression of the Xenopus Krox-20 gene. Anatomically it is evident that the development of the hindbrain normally anterior to the otocyst (rhombomeres 1-4) is abnormal following RA treatment. Sensory and motor axons of cranial nerves V and VII form a single root and the peripheral paths of V and VII and IX and X are also abnormal, as is the more anterior location of the otocyst. These anatomical changes are accompanied by changes in the pattern of expression for the gene XKrox-20, which normally expresses in rhombomeres 3 and 5, but is found in a single band in the anterior hindbrain of treated embryos which standardly fail to generate the normal external segmental appearance. The results are discussed in terms of both the teratogenic and possible endogenous roles of RA during normal development of the central nervous system. We conclude that low doses of RA applied during gastrulation have specific effects on the anterior Xenopus hindbrain which appear to be evolutionarily conserved in the light of similar recent findings in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号