首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang J  Wang X  Wang Y  Guo ZX  Luo DZ  Jia J  Wang XM 《Neurochemical research》2012,37(9):1982-1992
Muscle-derived stem cells reside in the skeletal muscle tissues and are known for their multipotency to differentiate toward the mesodermal lineage. Recent studies have demonstrated their capacity of neuroectodermal differentiation, including neurons and astrocytes. In this study, we investigated the possibility of dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells. Using a neurosphere protocol, muscle-derived stem cells form neurosphere-like cell clusters after cultivation as a suspension, displaying an obvious expression of nestin and a remarkable down-regulation of myogenic associated factors desmin, MyoD, Myf5 and myogenin. Subsequently, these neurosphere-like cell clusters were further directed to dopaminergic differentiation through two major induction steps, patterning to midbrain progenitors with sonic hedgehog and fibroblast growth factor 8, followed by the differentiation to dopaminergic neurons with neurotrophic factors (glial cell line-derived neurotrophic factor) and chemicals (ascorbic acid, forskolin). After the differentiation, these cells expressed tyrosine hydroxylase, dopamine transporter, dopamine D1 receptor and synapse-associated protein synapsin I. Several genes, Nurr1, Lmx1b, and En1, which are critically related with the development of dopaminergic neurons, were also significantly up-regulated. The present results indicate that adult skeletal muscle-derived stem cells could provide a promising cell source for autologous transplantation for neurodegenerative diseases in the future, especially the Parkinson's disease.  相似文献   

2.
Directed differentiation and purification of mesencephalic dopaminergic (mesDA) neurons from stem cells are crucial issues for realizing safe and efficient cell transplantation therapies for Parkinson's disease. Although recent studies have identified the factors that regulate mesDA neuron development, the mechanisms underlying mesDA neuron specification are not fully understood. Recently, it has been suggested that mesencephalic floor plate (FP) cells acquire neural progenitor characteristics to generate mesDA neurons. Here, we directly examined this in a fate mapping experiment using fluorescence-activated cell sorting (FACS) with an FP cell-specific surface marker, and demonstrate that mesencephalic FP cells have neurogenic activity and generate mesDA neurons in vitro. By contrast, sorted caudal FP cells have no neurogenic potential, as previously thought. Analysis of dreher mutant mice carrying a mutation in the Lmx1a locus and transgenic mice ectopically expressing Otx2 in caudal FP cells demonstrated that Otx2 determines anterior identity that confers neurogenic activity to FP cells and specifies a mesDA fate, at least in part through the induction of Lmx1a. We further show that FACS can isolate mesDA progenitors, a suitable transplantation material, from embryonic stem cell-derived neural cells. Our data provide insights into the mechanisms of specification and generation of mesDA neurons, and illustrate a useful cell replacement approach for Parkinson's disease.  相似文献   

3.
4.
5.
The severe disorders associated with a loss or dysfunction of midbrain dopamine neurons (DNs) have intensified research aimed at deciphering developmental programs controlling midbrain development. The homeodomain proteins Lmx1a and Lmx1b are important for the specification of DNs during embryogenesis, but it is unclear to what degree they may mediate redundant or specific functions. Here, we provide evidence showing that DN progenitors in the ventral midbrain can be subdivided into molecularly distinct medial and lateral domains, and these subgroups show different sensitivity to the loss of Lmx1a and Lmx1b. Lmx1a is specifically required for converting non-neuronal floor-plate cells into neuronal DN progenitors, a process that involves the establishment of Notch signaling in ventral midline cells. On the other hand, lateral DN progenitors that do not appear to originate from the floor plate are selectively ablated in Lmx1b mutants. In addition, we also reveal an unanticipated role for Lmx1b in regulating Phox2a expression and the sequential specification of ocular motor neurons (OMNs) and red nucleus neurons (RNNs) from progenitors located lateral to DNs in the midbrain. Our data therefore establish that Lmx1b influences the differentiation of multiple neuronal subtypes in the ventral midbrain, whereas Lmx1a appears to be exclusively devoted to the differentiation of the DN lineage.  相似文献   

6.
7.
8.
Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.  相似文献   

9.
10.
Abstract: Immature neurons, including fetal and tumoral cells, are used for investigating neuronal differentiation in vitro. The human neuroblastoma cell line NB69 could be induced to differentiate to dopamine or acetylcholine neurons by different compounds, including neurotrophins and activators of the protein kinases. In these NB69 cells dibutyryl cyclic AMP (dbcAMP) at 2 m M reduced the division rate and increased the levels of catecholamines, tyrosine hydroxylase (TH) activity, and monoamine oxidase activity. The dbcAMP also increased cell size, dendritic arborization, density of the sites for high-affinity dopamine uptake, and activity of choline acetyltransferase. In fetal rat midbrain neurons treatment with dbcAMP increased the levels of dopamine and the number of TH-immunoreactive neurons in the culture. When embryonic day 14 fetal midbrain neurons, previously exposed to 1 µ M retinoic acid (a compound that severely reduces the number of fetal midbrain dopamine neurons), were treated with dbcAMP, the levels of dopamine and the number of TH-immunoreactive cells returned to normal levels. This suggests that dbcAMP induces the differentiation to dopamine neurons of quiescent progenitor or facilitates expression of the dopamine phenotype in immature neurons. Therefore, dbcAMP not only differentiates uncommitted immature dopamine neurons, but also reverses the antidopaminergic effects of retinoic acid. These properties of dbcAMP could be of therapeutic value in Parkinson's disease.  相似文献   

11.
Parkinson's disease (PD) involves the loss of dopamine (DA) neurons, making it the most expected neurodegenerative disease to be treated by cell replacement therapy. Stem cells are a promising source for cell replacement therapy due to their ability to self-renew and their pluripotency/multipotency that allows them to generate various types of cells. However, it is challenging to derive midbrain DA neurons from stem cells. Thus, in this review, I will discuss the molecular factors that are known to play critical roles in the generation and survival of DA neurons. The developmental process of DA neurons and functions of extrinsic soluble factors and homeodomain proteins, forkhead box proteins, proneural genes, Nurr1 and genes involved in epigenetic control are discussed. In addition, different types of stem cells that have potential for future cell replacement therapy are reviewed.  相似文献   

12.
13.
β-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of β-chemokines in midbrain development. Here we report that two β-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of β-chemokines in the developing brain and identify β-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that β-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD).  相似文献   

14.
15.
Postmortem analysis of five subjects with Parkinson's disease 9-14 years after transplantation of fetal midbrain cell suspensions revealed surviving grafts that included dopamine and serotonin neurons without pathology. These findings are important for the understanding of the etiopathogenesis of midbrain dopamine neuron degeneration and future use of cell replacement therapies.  相似文献   

16.
To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM) identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.  相似文献   

17.
Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro.Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization.The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH+) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity.Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.  相似文献   

18.
体外诱导人骨髓间充质干细胞向多巴胺神经元分化的研究   总被引:4,自引:0,他引:4  
通过体外诱导人骨髓间充质干细胞(bone marrow mesenchymal stemcells,BMSCs)向多巴胺(dopamine,DA)神经元分化,探讨人BMSCs来源的DA神经元的功能特征及其分化机制,为临床上细胞移植替代治疗诸如帕金森氏病(parkinson’sdisease,PD)等神经精神性疾病提供一种理想的细胞来源。通过密度梯度离心获取人骨髓中的单个核细胞,贴壁培养纯化BMSCs。50μmol/L脑源性神经营养因子(brain derivedneurotrophy factor,BDNF),10μmol/Lforskolin(FSK)和10μmol/LDA联合对BMSCs进行诱导。电子显微镜观察诱导2周后细胞是否具有神经元的超微结构特点;免疫细胞化学染色和RT-PCR检测DA神经元分化过程中的标志物酪氨酸羟化酶(tyrosine hydroxylase,TH)的表达以及转录因子Nurr1、Ptx3和Lmx1b的表达;高效液相色谱(highperformance liquid chromatogram,HPLC)检测诱导2周后的细胞多巴胺的释放水平。结果表明,诱导2周后,电镜下细胞胞浆中有大量密集的呈扁平囊状的粗面内质网及其间的一些游离核糖体以及神经微丝的形成。RT-PCR结果显示NSE(neuron specificenolase)、Nurr1、Ptx3、Lmx1b和TH的mRNA均有表达;免疫细胞化学染色结果表明诱导2周后TH阳性细胞(24·80±3·36)%的表达较诱导3d后(3·77±1·77)%明显提高(P<0·01);HPLC检测到诱导2周后的细胞DA释放水平[(1·22±0·36)μg/mL(n=6)]高于未经诱导的细胞[(0·75±0·22)μg/mL(n=6)(t=-2·79,P=0·038)]。由此得出,BDNF、FSK和DA可以在体外诱导人BMSCs向DA神经元分化,并具有DA神经元的功能特征,是临床用于治疗神经精神性疾病的理想细胞来源。  相似文献   

19.
Dopaminergic neurons   总被引:2,自引:0,他引:2  
  相似文献   

20.
Arenas E 《Cell Stem Cell》2008,2(2):110-112
Understanding the development and maintenance of dopamine neurons is essential to establish novel stem cell therapies and animal models of Parkinson's disease. A recent PLoS Biology report (Kittappa et al., 2007) reveals that Foxa2 regulates dopamine neuron generation and differentiation, and that aging foxa2(+/-) mice spontaneously develop Parkinsonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号