首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
枯草菌HemAT蛋白质是新近发现的一种基于血红素的趋氧性同型二聚体蛋白质。作者对此蛋白质进行了表达和提纯。用紫外共振拉曼光谱研究了全分子和传感域HemAT在与配基O2结合时的构象变化。发现O2配基与HemAT蛋白质的结合使传感域中Trp和Tyr的环境发生变化,而对连接域中Tyr的环境影响可忽略不计。信号发送域对O2配基引起的Trp和Tyr的环境变化不产生影响。O2配基与HemAT蛋白质的结合使得G-螺旋发生位移,传感域与信号发送域通过某种互感方式把O2结合信号从传感域传递到信号发送域。  相似文献   

2.
HemAT from Bacillus subtilis (HemAT-Bs) is a heme-based O2 sensor protein that acts as a signal transducer responsible for aerotaxis. HemAT-Bs discriminates its physiological effector (O2) from other gas molecules (CO and NO), although all of them bind to a heme. To monitor the conformational changes in the protein moiety upon binding of different ligands, we have investigated ultraviolet resonance Raman (UVRR) spectra of the ligand-free and O2-, CO-, and NO-bound forms of full-length HemAT-Bs and several mutants (Y70F, H86A, T95A, and Y133F) and found that Tyr70 in the heme distal side and Tyr133 and Trp132 from the G-helix in the heme proximal side undergo environmental changes upon ligand binding. In addition, the UVRR results confirmed our previous model, which suggested that Thr95 forms a hydrogen bond with heme-bound O2, but Tyr70 does not. It is deduced from this study that hydrogen bonds between Thr95 and heme-bound O2 and between His86 and heme 6-propionate communicate the heme structural changes to the protein moiety upon O2 binding but not upon CO and NO binding. Accordingly, the present UVRR results suggest that O2 binding to heme causes displacement of the G-helix, which would be important for transduction of the conformational changes from the sensor domain to the signaling domain.  相似文献   

3.
HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ~50 μs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ~50 μs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 μs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.  相似文献   

4.
Mizuno M  Sudo Y  Homma M  Mizutani Y 《Biochemistry》2011,50(15):3170-3180
Sensory rhodopsin II (SRII) is a negative phototaxis receptor containing retinal as its chromophore, which mediates the avoidance of blue light. The signal transduction is initiated by the photoisomerization of the retinal chromophore, resulting in conformational changes of the protein which are transmitted to a transducer protein. To gain insight into the SRII sensing mechanism, we employed time-resolved ultraviolet resonance Raman spectroscopy monitoring changes in the protein structure in the picosecond time range following photoisomerization. We used a 450 nm pump pulse to initiate the SRII photocycle and two kinds of probe pulses with wavelengths of 225 and 238 nm to detect spectral changes in the tryptophan and tyrosine bands, respectively. The observed spectral changes of the Raman bands are most likely due to tryptophan and tyrosine residues located in the vicinity of the retinal chromophore, i.e., Trp76, Trp171, Tyr51, or Tyr174. The 225 nm UVRR spectra exhibited bleaching of the intensity for all the tryptophan bands within the instrumental response time, followed by a partial recovery with a time constant of 30 ps and no further changes up to 1 ns. In the 238 nm UVRR spectra, a fast recovering component was observed in addition to the 30 ps time constant component. A comparison between the spectra of the WT and Y174F mutant of SRII indicates that Tyr174 changes its structure and/or environment upon chromophore photoisomerization. These data represent the first real-time observation of the structural change of Tyr174, of which functional importance was pointed out previously.  相似文献   

5.
Haruta N  Aki M  Ozaki S  Watanabe Y  Kitagawa T 《Biochemistry》2001,40(23):6956-6963
Conformational change of myoglobin (Mb) accompanied by binding of a ligand was investigated with 244 nm excited ultraviolet resonance Raman Spectroscopy (UVRR). The UVRR spectra of native sperm whale (sw) and horse (h) Mbs and W7F and W14F swMb mutants for the deoxy and CO-bound states enabled us to reveal the UVRR spectra of Trp7, Trp14, and Tyr151 residues, separately. The difference spectra between the deoxy and CO-bound states reflected the environmental or structural changes of Trp and Tyr residues upon CO binding. The W3 band of Trp7 near the N-terminus exhibited a change upon CO binding, while Trp14 did not. Tyr151 in the C-terminus also exhibited a definite change upon CO binding, but Tyr103 and Tyr146 did not. The spectral change of Tyr residues was characterized through solvent effects of a model compound. The corresponding spectral differences between CO- and n-butyl isocyanide-bound forms were much smaller than those between the deoxy and CO-bound forms, suggesting that the conformation change in the C- and N-terminal regions is induced by the proximal side of the heme through the movement of iron. Although the swinging up of His64 upon binding of a bulky ligand is noted by X-ray crystallographic analysis, UVRR spectra of His for the n-butyl isocyanide-bound form did not detect the exposure of His64 to solvent.  相似文献   

6.
7.
The structures of variants of yeast iso-1-cytochrome c, in which the previously unchanged Tyr48 and Tyr48 + Trp59 have been replaced by Phe, have been characterised by NMR. The NMR data indicated that the structures of the variant cytochromes c are very similar to the wild-type protein. In particular, the heme environment and interactions of the heme macrocycle were shown to be preserved. The observation of chemical shift differences have allowed for the assessment of conformational changes. The substitution of Trp59 by Phe may have caused a small conformational change, a manifestation of which is the observed chemical shift differences at His39, Val57 and Tyr74. The structural basis for the reduction in redox potential accompanying the amino acid substitutions is discussed and the proposal made that the changes in potential are a direct consequence of the side chain properties and do not result primarily from conformational changes.  相似文献   

8.
HemAT from Bacillus subtilis (HemAT-Bs) is a heme-containing O(2) sensor protein that acts as a chemotactic signal transducer. Binding of O(2) to the heme in the sensor domain of HemAT-Bs induces a conformational change in the protein matrix, and this is transmitted to a signaling domain. To characterize the specific mechanism of O(2)-dependent conformational changes in HemAT-Bs, we investigated time-resolved resonance Raman spectra of the truncated sensor domain and the full-length HemAT-Bs upon O(2) and CO dissociation. A comparison between the O(2) and CO complexes provides insights on O(2)/CO discrimination in HemAT-Bs. While no spectral changes upon CO dissociation were observed in our experimental time window between 10ns and 100μs, the band position of the stretching mode between the heme iron and the proximal histidine, ν(Fe-His), for the O(2)-dissociated HemAT-Bs was lower than that for the deoxy form on time-resolved resonance Raman spectra. This spectral change specific to O(2) dissociation would be associated with the O(2)/CO discrimination in HemAT-Bs. We also compared the results obtained for the truncated sensor domain and the full-length HemAT-Bs, which showed that the structural dynamics related to O(2) dissociation for the full-length HemAT-Bs are faster than those for the sensor domain HemAT-Bs. This indicates that the heme proximal structural dynamics upon O(2) dissociation are coupled with signal transduction in HemAT-Bs.  相似文献   

9.
The bacterial CO-sensing heme protein CooA activates expression of genes whose products perform CO-metabolism by binding its target DNA in response to CO binding. The required conformational change has been proposed to result from CO-induced displacement of the heme and of the adjacent C-helix, which connects the sensory and DNA-binding domains. Support for this proposal comes from UV Resonance Raman (UVRR) spectroscopy, which reveals a more hydrophobic environment for the C-helix residue Trp110 when CO binds. In addition, we find a tyrosine UVRR response, which is attributable to weakening of a Tyr55-Glu83 H-bond that anchors the proximal side of the heme. Both Trp and Tyr responses are augmented in the heme domain when the DNA-binding domain has been removed, apparently reflecting loss of the inter-domain restraint. This augmentation is abolished by a Glu83Gln substitution, which weakens the anchoring H-bond. The CO recombination rate following photolysis of the CO adduct is similar for truncated and full-length protein, though truncation does increase the rate of CO association in the absence of photolysis; together these data indicate that truncation causes a faster dissociation of the endogenous Pro2 ligand. These findings are discussed in the light of structural evidence that the N-terminal tail, once released from the heme, selects the proper orientation of the DNA-binding domain, via docking interactions.  相似文献   

10.
Heme-heme interaction in Hb M Boston (His alpha 58-->Tyr) was investigated with visible and UV resonance Raman (RR), EPR, and CD spectroscopies. Although Hb M Boston has been believed to be frozen in the T quaternary state, oxygen binding exhibited appreciable co-operativity (n=1.4) and the near-UV CD spectrum indicated weakening of the T marker at pH 9.0. Binding of CO to the normal beta-subunit gave no change in the EPR and visible Raman spectra of the abnormal alpha-subunit at pH 7.5, but it caused an increase of EPR rhombicity and significant changes in the Raman coordination markers as well as the Fe(III)-tyrosine related bands of the alpha-subunit at pH 9.0. The UVRR spectra indicated appreciable changes of Trp but not of Tyr upon CO binding to the alpha-subunit at pH 9.0. Therefore, we conclude that the ligand binding to the beta heme induces quaternary structure change at pH 9.0 and is communicated to the alpha heme, presumably through His beta 92-->Trp beta 37-->His alpha 87.  相似文献   

11.
Ferricytochrome c can be converted to the partially folded A-state at pH 2.2 in the presence of 1.5 M NaCl. The structure of the A-state has been studied in comparison with the native and unfolded states, using resonance Raman spectroscopy with visible and ultraviolet excitation wavelengths. Spectra obtained with 200 nm excitation show a decrease in amide II intensity consistent with loss of structure for the 50s and 70s helices. The 230-nm spectra contain information on vibrational modes of the single Trp 59 side chain and the four tyrosine side chains (Tyr 48, 67, 74, and 97). The Trp 59 modes indicate that the side chain remains in a hydrophobic environment but loses its tertiary hydrogen bond and is rotationally disordered. The tyrosine modes Y8b and Y9a show disruption of tertiary hydrogen bonding for the Tyr 48, 67, and 74 side chains. The high-wavenumber region of the 406.7-nm resonance Raman spectrum reveals a mixed spin heme iron atom, which arises from axial coordination to His 18 and a water molecule. The low-frequency spectral region reports on heme distortions and indicates a reduced degree of interaction between the heme and the polypeptide chain. A structural model for the A-state is proposed in which a folded protein subdomain, consisting of the heme and the N-terminal, C-terminal, and 60s helices, is stabilized through nonbonding interactions between helices and with the heme.  相似文献   

12.
UV resonance Raman (UVRR) spectroscopy is used to study the binding of biotin and 2-iminobiotin by streptavidin, and the results are compared to those previously obtained from the avidin-biotin complex and new data from the avidin-2-iminobiotin complex. UVRR difference spectroscopy using 244-nm excitation reveals changes to the tyrosine (Tyr) and tryptophan (Trp) residues of both proteins upon complex formation. Avidin has four Trp and only one Tyr residue, while streptavidin has eight Trp and six Tyr residues. The spectral changes observed in streptavidin upon the addition of biotin are similar to those observed for avidin. However, the intensity enhancements observed for the streptavidin Trp Raman bands are less than those observed with avidin. The changes observed in the streptavidin Tyr bands are similar to those observed for avidin and are assigned exclusively to the binding site Tyr 43 residue. The Trp and Tyr band changes are due to the exclusion of water and addition of biotin, resulting in a more hydrophobic environment for the binding site residues. The addition of 2-iminobiotin results in spectral changes to both the streptavidin and avidin Trp bands that are very similar to those observed upon the addition of biotin in each protein. The changes to the Tyr bands are very different than those observed with the addition of biotin, and similar spectral changes are observed in both streptavidin and avidin. This is attributable to hydrogen bond changes to the binding site Tyr residue in each protein, and the similar Tyr difference features in both proteins supports the exclusive assignment of the streptavidin Tyr difference features to the binding site Tyr 43.  相似文献   

13.
Nagatomo S  Nagai M  Shibayama N  Kitagawa T 《Biochemistry》2002,41(31):10010-10020
The alpha1-beta2 subunit contacts in the half-ligated hemoglobin A (Hb A) have been explored with ultraviolet resonance Raman (UVRR) spectroscopy using the Ni-Fe hybrid Hb under various solution conditions. Our previous studies demonstrated that Trpbeta37, Tyralpha42, and Tyralpha140 are mainly responsible for UVRR spectral differences between the complete T (deoxyHb A) and R (COHb A) structures [Nagai, M., Wajcman, H., Lahary, A., Nakatsukasa, T., Nagatomo, S., and Kitagawa, T. (1999) Biochemistry, 38, 1243-1251]. On the basis of it, the UVRR spectra observed for the half-ligated alpha(Ni)beta(CO) and alpha(CO)beta(Ni) at pH 6.7 in the presence of IHP indicated the adoption of the complete T structure similar to alpha(Ni)beta(deoxy) and alpha(deoxy)beta(Ni). The extent of the quaternary structural changes upon ligand binding depends on pH and IHP, but their characters are qualitatively the same. For alpha(Ni)beta(Fe), it is not until pH 8.7 in the absence of IHP that the Tyr bands are changed by ligand binding. The change of Tyr residues is induced by binding of CO, but not of NO, to the alpha heme, while it was similarly induced by binding of CO and NO to the beta heme. The Trp bands are changed toward R-like similarly for alpha(Ni)beta(CO) and alpha(CO)beta(Ni), indicating that the structural changes of Trp residues are scarcely different between CO binding to either the alpha or beta heme. The ligand induced quaternary structural changes of Tyr and Trp residues did not take place in a concerted way and were different between alpha(Ni)beta(CO) and alpha(CO)beta(Ni). These observations directly indicate that the phenomenon occurring at the alpha1-beta2 interface is different between the ligand binding to the alpha and beta hemes and is greatly influenced by IHP. A plausible mechanism of the intersubunit communication upon binding of a ligand to the alpha or beta subunit to the other subunit and its difference between NO and CO as a ligand are discussed.  相似文献   

14.
Gas sensory heme proteins respond to their environment by binding a specific gas molecule to heme and transmitting this primary binding signal to the protein. How the binding signal is transmitted from the heme to the protein remains to be clarified. Using UV resonance Raman (UVRR) spectroscopy, we investigated this pathway in sperm whale myoglobin as a model gas sensory heme protein. Based on the UVRR data and the effects of deleting one of three important pathways (His-93, 6-propionate, or 7-propionate), we determined the changes in the conformation of globin that occur upon binding of CO, nitric oxide (NO), or O(2) to heme and how they are transmitted from heme to globin. The UVRR results show that heme discriminates different ligands, resulting in different conformations in the globin protein. Specifically, NO induces changes in the spectrum of Trp residues in the A-helix that are significantly different from those induced by O(2) or CO binding. On the other hand, binding of O(2) to heme produces changes in the Tyr residues of the H-helix that are different from those induced by CO or NO binding. Furthermore, we found that cleavage of the Fe-His-93 covalent bond eliminates communication to the terminal region of the H-helix and that the 7-propionate hydrogen-bonding network is essential for transmitting the CO or NO binding signal to the N and C termini. Finally, the 6-propionate is important only for NO binding. Thus, the hydrogen-bonding network in the protein appears to be critical for intramolecular signal transduction in gas sensory heme proteins.  相似文献   

15.
Mukai M  Ouellet Y  Ouellet H  Guertin M  Yeh SR 《Biochemistry》2004,43(10):2764-2770
The resonance Raman spectra of the NO-bound ferric derivatives of wild-type HbN and the B10 Tyr --> Phe mutant of HbN, a hemoglobin from Mycobacterium tuberculosis, were examined with both Soret and UV excitation. The Fe-N-O stretching and bending modes of the NO derivative of the wild-type protein were tentatively assigned at 591 and 579 cm(-1), respectively. Upon B10 mutation, the Fe-NO stretching mode was slightly enhanced and the bending mode diminished in amplitude. In addition, the N-O stretching mode shifted from 1914 to 1908 cm(-1). These data suggest that the B10 Tyr forms an H-bond(s) with the heme-bound NO and causes it to bend in the wild-type protein. To further investigate the interaction between the B10 Tyr and the heme-bound NO, we examined the UV Raman spectrum of the B10 Tyr by subtracting the B10 mutant spectrum from the wild-type spectrum. It was found that, upon NO binding to the ferric protein, the Y(8a) mode of the B10 Tyr shifted from 1616 to 1622 cm(-1), confirming a direct interaction between the B10 Tyr and the heme-bound NO. Furthermore, the Y(8a) mode of the other two Tyr residues at positions 16 and 72 that are remote from the heme was also affected by NO binding, suggesting that NO binding to the distal site of the heme triggers a large-scale conformational change that propagates through the pre-F helix loop to the E and B helices. This large-scale conformational change triggered by NO binding may play an important role in regulating the ligand binding properties and/or the chemical reactivity of HbN.  相似文献   

16.
Electronic absorption and resonance Raman spectroscopies have been applied to study the ferric and ferrous forms, and fluoride complexes of the Tyr249Phe and Met275Ile variants of the recombinant catalase-peroxidase (KatG) from the cyanobacterium Synechocystis PCC 6803. Both crystal structures and mass spectrometric analysis demonstrated that Tyr249 and Met275 are part of a novel KatG-specific covalent adduct including in addition a conserved tryptophan. Its role is not well established, but it has been shown to be essential for the catalase activity. In the present work we investigate the effect of mutation on the protein stability and ligand binding. The results clearly show that mutation weakens the heme binding to the protein, giving rise to a partial conversion from the 5-coordinate high spin of the wild-type protein to 6-coordinate low-spin heme. An internal ligand binds the heme iron on the distal side as a consequence of protein destabilization and partially prevents the binding of external ligand such as fluoride. The results are compared with those previously reported for the Trp122Ala and Trp122Phe variants.  相似文献   

17.
Studies of CO ligand binding revealed that two protein states with different ligand affinities exist in the protoglobin from Methanosarcina acetivorans (in MaPgb*, residue Cys(E20)101 was mutated to Ser). The switch between the two states occurs upon the ligation of MaPgb*. In this work, site-directed mutagenesis was used to explore the role of selected amino acids in ligand sensing and stabilization and in affecting the equilibrium between the “more reactive” and “less reactive” conformational states of MaPgb*. A combination of experimental data obtained from electronic and resonance Raman absorption spectra, CO ligand-binding kinetics, and X-ray crystallography was employed. Three amino acids were assigned a critical role: Trp(60)B9, Tyr(61)B10, and Phe(93)E11. Trp(60)B9 and Tyr(61)B10 are involved in ligand stabilization in the distal heme pocket; the strength of their interaction was reflected by the spectra of the CO-ligated MaPgb* and by the CO dissociation rate constants. In contrast, Phe(93)E11 is a key player in sensing the heme-bound ligand and promotes the rotation of the Trp(60)B9 side chain, thus favoring ligand stabilization. Although the structural bases of the fast CO binding rate constant of MaPgb* are still unclear, Trp(60)B9, Tyr(61)B10, and Phe(93)E11 play a role in regulating heme/ligand affinity.  相似文献   

18.
A mutant (M48Y) of chicken skeletal muscle troponin C was prepared in which Tyr replaced Met-48 of the recombinant protein (rTnC). Since Tyr and Trp are normally absent, spectral properties could be unambiguously assigned to the site of substitution. In the crystal structure, this residue lies at the COOH-terminal end of the B-helix of the N domain in a region postulated to undergo a significant conformational change to a more polar environment upon Ca2+ binding [Herzberg et al. (1986) J. Biol. Chem. 261, 2638-2644]. Comparison of the far-UV CD spectra of M48Y and rTnC in the absence and presence of Ca2+ indicated no overall structural alteration due to the mutation. However, Ca2+ titration of the ellipticity change showed a reduction in Ca2+ affinity and cooperativity of sites I and II. A Ca(2+)-induced increase in the near-UV ellipticity of M48Y at pH 7.12 and a red shift in its UV absorbance spectrum occurred over a range of free [Ca2+] attributable to the N-domain transition only. This was largely abolished at pH 5.3 where Ca2+ no longer binds to sites I and II. That region of the 1H NMR spectrum attributable to Tyr was broadened upon Ca2+ binding. These Ca(2+)-induced changes are consistent with the environment of the Tyr side chain becoming chiral, less polar, and more immobile, all in a direction opposite to that predicted. These observations indicate that while the general features of the postulated model are valid, it is unlikely to be correct in detail.  相似文献   

19.
L Richard  L Genberg  J Deak  H L Chiu  R J Miller 《Biochemistry》1992,31(44):10703-10715
Phase grating spectroscopy has been used to follow the optically triggered tertiary structural changes of carboxymyoglobin (MbCO) and carboxyhemoglobin (HbCO). Probe wavelength and temperature dependencies have shown that the grating signal arises from nonthermal density changes induced by the protein structural changes. The material displaced through the protein structural changes leads to the excitation of coherent acoustic modes of the surrounding water. The coupling of the structural changes to the fluid hydrodynamics demonstrates that a global change in the protein structure is occurring in less than 30 ps. The global relaxation is on the same time scale as the local changes in structure in the vicinity of the heme pocket. The observed dynamics for global relaxation and correspondence between the local and global structural changes provides evidence for the involvement of collective modes in the propagation of the initial tertiary conformational changes. The energetics can also be derived from the acoustic signal. For MbCO, the photodissociation process is endothermic by 21 +/- 2 kcal/mol, which corresponds closely to the expected Fe-CO bond enthalpy. In contrast, HbCO dissipates approximately 10 kcal/mol more energy relative to myoglobin during its initial tertiary structural relaxation. The difference in energetics indicates that significantly more energy is stored in the hemoglobin structure and is believed to be related to the quaternary structure of hemoglobin not present in the monomeric form of myoglobin. These findings provide new insight into the biomechanics of conformational changes in proteins and lend support to theoretical models invoking stored strain energy as the driving force for large amplitude correlated motions.  相似文献   

20.
The direct oxygen sensor protein isolated from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of O(2), CO, or NO to a reduced heme significantly enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report stationary and time-resolved resonance Raman spectra of the wild-type and several mutants (Glu-93 --> Ile, Met-95 --> Ala, Arg-97 --> Ile, Arg-97 --> Ala, Arg-97 --> Glu, Phe-113 --> Leu, and Phe-113 --> Thr) of the heme-containing PAS domain of Ec DOS. For the CO- and NO-bound forms, both the hydrogen-bonded and non-hydrogen-bonded conformations were found, and in the former Arg-97 forms a hydrogen bond with the heme-bound external ligand. The resonance Raman results revealed significant interactions of Arg-97 and Phe-113 with a ligand bound to the sixth coordination site of the heme and profound structural changes in the heme propionates upon dissociation of CO. Mutation of Phe-113 perturbed the PDE activities, and the mutation of Arg-97 and Phe-113 significantly influenced the transient binding of Met-95 to the heme upon photodissociation of CO. This suggests that the electrostatic interaction of Arg-97 and steric interaction of Phe-113 are crucial for regulating the competitive recombination of Met-95 and CO to the heme. On the basis of these results, we propose a model for the role of the heme propionates in communicating the heme structural changes to the protein moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号