首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clinal variation has been described in a number of inversions in Drosophila but these clines are often characterized by cytological techniques using small sample sizes, and associations with specific genes are rarely considered. Here we have developed a molecular assay for In(3R)Payne in Drosophila melanogaster from eastern Australia populations. It shows in repeated samples that the inversion cline is very tightly associated with latitude and is almost fixed in tropical populations while relatively rare in temperate populations. This steep cline has shifted in position in the last 20 years. The heat shock gene, hsr-omega, located centrally inside the inversion sequence, shows a different clinal pattern to In(3R)Payne. These results suggest strong ongoing selection on In(3R)Payne over the last 100 years since the colonization of Australia that is partly independent of hsr-omega.  相似文献   

2.
Many organisms show latitudinal variation for quantitative traits that is assumed to be due to climatic adaptation. These clines provide an opportunity to study the genetics of the adaptive process both at the phenotypic and the underlying molecular levels. Yet researchers rarely try to link variation in quantitative traits to their underlying molecular genetic basis. We describe a novel approach for exploring the genetic basis for clinal variation in size and stress traits in Drosophila melanogaster. We look for associations between genetic markers and traits that exhibit clinal patterns on the east coast of Australia using a single, geographically central population. There are strong associations between markers found within In(3R)Payne and variation in size, suggesting that this inversion explains much of the clinal variation in this trait. We also find that development time is associated with the Adh allozyme locus, cold resistance is negatively associated with the In(3L)Payne inversion and a genetic marker for Hsp70, a heat‐shock protein, is associated with heat resistance. Finally we discuss the importance of inversions in clinal variation for quantitative traits and for identifying quantitative trait loci.  相似文献   

3.
Hoffmann AA  Weeks AR 《Genetica》2007,129(2):133-147
Drosophila melanogaster invaded Australia around 100 years ago, most likely through a northern invasion. The wide range of climatic conditions in eastern Australia across which D. melanogaster is now found provides an opportunity for researchers to identify traits and genes that are associated with climatic adaptation. Allozyme studies indicate clinal patterns for at least four loci including a strong linear cline in Adh and a non-linear cline in alpha-Gpdh. Inversion clines were initially established from cytological studies but have now been validated with larger sample sizes using molecular markers for breakpoints. Recent collections indicate that some genetic markers (Adh and In(3R)Payne) have changed over the last 20 years reflecting continuing evolution. Heritable clines have been established for quantitative traits including wing length/area, thorax length and cold and heat resistance. A cline in egg size independent of body size and a weak cline in competitive ability have also been established. Postulated clinal patterns for resistance to desiccation and starvation have not been supported by extensive sampling. Experiments under laboratory and semi-natural conditions have suggested selective factors generating clinal patterns, particularly for reproductive patterns over winter. Attempts are being made to link clinal variation in traits to specific genes using QTL analysis and the candidate locus approach, and to identify the genetic architecture of trait variation along the cline. This is proving difficult because of inversion polymorphisms that generate disequilibrium among genes. Substantial gaps still remain in linking clines to field selection and understanding the genetic and physiological basis of the adaptive shifts. However D. melanogaster populations in eastern Australia remain an excellent resource for understanding past and future evolutionary responses to climate change.  相似文献   

4.
The cosmopolitan inversion In(3R)Payne in Drosophila melanogaster decreases in frequency with increasing distance from the equator on three continents, indicating it is subject to strong natural selection. We investigated patterns of genetic variation and linkage disequilibrium (LD) in 24 molecular markers located within and near In(3R)Payne to determine if different parts of the inversion responded to selection the same way. We found reduced variation in the markers we used compared to others distributed throughout the genome, consistent with the inversion having a relatively recent origin (相似文献   

5.
Body size and thermal tolerance clines in Drosophila melanogaster occur along the east coast of Australia. However the extent to which temperature affects the genetic architecture underlying the observed clinal divergence remains unknown. Clinal variation in these traits is associated with cosmopolitan chromosome inversions that cline in D. melanogaster. Whether this association influences the genetic architecture for these traits in D. melanogaster is unclear. Drosophila simulans shows linear clines in body size, but nonlinear clines in cold resistance. Clinally varying inversions are absent in D. simulans. Line-cross and clinal analyses were performed between tropical and temperate populations of D. melanogaster and D. simulans from the east coast of Australia to investigate whether clinal patterns and genetic effects contributing to clinal divergence in wing centroid size, thorax length, wing-to-thorax ratio, cold and heat resistance differed under different developmental temperatures (18 °C, 25 °C, and 29 °C). Developmental temperature influenced the genetic architecture in both species. Similarities between D. melanogaster and D. simulans suggest clinally varying inversion polymorphisms have little influence on the genetic architecture underlying clinal divergence in size in D. melanogaster. Differing genetic architectures across different temperatures highlight the need to consider different environments in future evolutionary and molecular studies of phenotypic divergence.  相似文献   

6.
7.
Drosophila melanogaster occurs in diverse climatic regions and shows opposing clinal changes in resistance to heat and resistance to cold along a 3000 km latitudinal transect on the eastern coast of Australia. We report here on variation at a polymorphic 8 bp-indel site in the heat shock hsr-omega gene that maps to the right arm of chromosome 3. The frequency of the genetic element marked by the L form of the gene was strongly and positively associated with latitude along this transect, and latitudinal differences in L frequency were robustly associated with latitudinal differences in maximum temperature for the hottest month. On a genetic background mixed for genes from each end of the cline a set of 10 lines was derived, five of which were fixed for the L marker, the absence of In(3R)P and 12 kb of repeats at a second polymorphic site at the 3' end of hsr-omega, and five that were fixed for the S marker, In(3R)P and 15 kb of hsr-omega repeats. For two different measures of heat tolerance S lines outperformed L lines, and for two different measures of cold tolerance L lines outperformed S lines. These data suggest that an element on the right arm of chromosome 3, possibly In(3R)P, confers heat resistance but carries the trade-off of also conferring susceptibility to cold. This element occurs at high frequency near the equator. The alternate element on the other hand, at high frequency at temperate latitudes, confers cold resistance at the cost of heat susceptibility.  相似文献   

8.
G. McColl  A. A. Hoffmann    S. W. McKechnie 《Genetics》1996,143(4):1615-1627
To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance.  相似文献   

9.
Heat shock genes are considered to be likely candidate genes for environmental stress resistance. Nucleotide variation in the coding sequence of the small heat shock genes (hsps) hsp26 and hsp27 from Drosophila melanogaster was studied in flies originating from the Netherlands and eastern Australia. The hsp26 gene was polymorphic for an insertion/deletion of three extra amino acids and two nonsynonymous changes in all populations. The hsp27 gene exhibited two nonsynonymous changes and three synonymous mutations. The hsp26 polymorphism showed a latitudinal cline along the east coast of Australia. This pattern was not confounded by the fact that the shsps are located in the inversion In(3 L)P which also shows a latitudinal cline in eastern Australia. A similar latitudinal cline was found for the previously described variation in hsp23, while frequencies of hsp27 alleles did not change with latitude. These findings suggest that variation at two of the shsps or closely linked loci are under selection in natural populations of D. melanogaster.  相似文献   

10.
Thermotolerance traits vary across geographical gradients but there is a lack of clinal variation in some Drosophila species. Thus, it is not clear whether thermotolerance or other correlated traits are the target of natural selection. In order to test selection responses, we investigated body melanization and thermotolerance traits in six altitudinal populations of Drosophila melanogaster . Based on rearing different geographical populations under uniform growth conditions at 21 °C (common garden experiments), clinal variations for cold resistance are in the direction opposite to heat resistance along an altitudinal gradient, that is darker flies from highland populations evidenced higher levels of cold resistance while lowland populations showed higher heat resistance. Phenotypic plastic responses for body melanization at 17–28 °C showed significant correlations with thermotolerance traits. At 17 °C, regression coefficients as a function of altitude are highly significant and positive for cold resistance but negative for heat knockdown. However, for flies reared at 28 °C, there is no elevational change in melanization as well as thermotolerance traits. Thus, both genetic and plastic changes of body melanization and thermotolerance traits suggest a correlated selection response. Further, within-population analyses of body melanization (based on dark, intermediate and light color phenotypes) showed significant associations with thermotolerance traits. Correlated variations in body melanization and thermal tolerances are associated with climatic thermal variability ( T cv) but not with T min. or T max. along an altitudinal gradient.  相似文献   

11.
Latitudinal clines are considered a powerful means of investigating evolutionary responses to climatic selection in nature. However, most clinal studies of climatic adaptation in Drosophila have involved species that contain cosmopolitan inversion polymorphisms that show clinal patterns themselves, making it difficult to determine whether the traits or inversions are under selection. Further, although climatic selection is unlikely to act on only one life stage in metamorphic organisms, a few studies have examined clinal patterns across life stages. Finally, clinal patterns of heat tolerance may also depend on the assay used. To unravel these potentially confounding effects on clinal patterns of thermal tolerance, we examined adult and larval heat tolerance traits in populations of Drosophila simulans from eastern Australia using static and dynamic (ramping 0.06 °C min?1) assays. We also used microsatellites markers to clarify whether demographic factors or selection are responsible for population differentiation along clines. Significant cubic clinal patterns were observed for adult static basal, hardened and dynamic heat knockdown time and static basal heat survival in larvae. In contrast, static, hardened larval heat survival increased linearly with latitude whereas no clinal association was found for larval ramping survival. Significant associations between adult and larval traits and climatic variables, and low population differentiation at microsatellite loci, suggest a role for climatic selection, rather than demographic processes, in generating these clinal patterns. Our results suggest that adaptation to thermal stress may be species and life‐stage specific, complicating our efforts to understand the evolutionary responses to selection for increasing thermotolerance.  相似文献   

12.
Latitudinal clines have been demonstrated for many quantitative traits in Drosophila and are assumed to be due to climatic selection. However, clinal studies are often performed in species of Drosophila that contain common cosmopolitan inversion polymorphisms that also show clinal patterns. These inversion polymorphisms may be responsible for much of the observed clinal variation. Here, we consider latitudinal clines for quantitative traits in Drosophila simulans from eastern Australia. Drosophila simulans does not contain cosmopolitan inversion polymorphisms, so allows the study of clinal selection on quantitative traits that are not confounded by associations with inversions. Body size showed a strong linear cline for both females and males. Starvation resistance exhibited a weak linear cline in females, whereas chill-coma recovery exhibited a significant nonlinear cline in females only. No clinal pattern was evident for development time, male chill-coma recovery, desiccation or heat resistance. We discuss these results with reference to the role inversion polymorphisms play in generating clines in quantitative traits of Drosophila.  相似文献   

13.
Latitudinal variation of the polymorphic sn-glycerol-3-phosphate (alpha-Gpdh) locus in Drosophila melanogaster has been characterized on several continents; however, apparent clinal patterns are potentially confounded by linkage with an inversion, close associations with other genetic markers that vary clinally, and a tandem alpha-Gpdh pseudogene. Here we compare clinal patterns in alpha-Gpdh with those of other linked markers by testing field flies from eastern Australian locations collected in two separate years. The alpha-Gpdh variation exhibited a consistent non-linear cline reflecting an increase in the alpha-GpdhF allele at extreme latitudes. This pattern was not influenced by the In(2L)t inversion wherein this locus is located, nor was it influenced by the presence of the alpha-Gpdh pseudogene, whose presence was ubiquitous and highly variable among populations. The alpha-Gpdh pattern was also independent of a cline in allozyme frequencies at the alcohol dehydrogenase (Adh) locus, and two length polymorphisms in the Adh gene. These results suggest clinal selection at the alpha-Gpdh locus that is partially or wholly unrelated to linear climatic gradients along the eastern coast of Australia.  相似文献   

14.
In insects, species comparisons suggest a weak association between upper thermal limits and latitude in contrast to a stronger association for lower limits. To compare this to latitudinal patterns of thermal responses within species, we considered latitudinal variation in heat and cold resistance in Drosophila melanogaster. We found opposing clines in resistance to these temperature extremes in comparisons of 17–24 populations from coastal eastern Australia. Knockdown time following heat shock increased towards the tropics, whereas recovery time following cold shock decreased towards temperate latitudes. Mortality following cold shock also showed a clinal pattern. Clinal associations with latitude were linear and related to minimum temperatures in the coldest month (for cold resistance) and maximum temperatures in the warmest month (for heat resistance). This suggests that within species both high and low temperature responses can vary with latitude as a consequence of direct or indirect effects of selection.  相似文献   

15.
Chromosomal inversions often contribute to local adaptation across latitudinal clines, but the underlying selective mechanisms remain poorly understood. We and others have previously shown that a clinal inversion polymorphism in Drosophila melanogaster, In(3R)Payne, underpins body size clines along the North American and Australian east coasts. Here, we ask whether this polymorphism also contributes to clinal variation in other fitness‐related traits, namely survival traits (lifespan, survival upon starvation and survival upon cold shock). We generated homokaryon lines, either carrying the inverted or standard chromosomal arrangement, isolated from populations approximating the endpoints of the North American cline (Florida, Maine) and phenotyped the flies at two growth temperatures (18 °C, 25 °C). Across both temperatures, high‐latitude flies from Maine lived longer and were more stress resistant than low‐latitude flies from Florida, as previously observed. Interestingly, we find that this latitudinal pattern is partly explained by the clinal distribution of the In(3R)P polymorphism, which is at ~ 50% frequency in Florida but absent in Maine: inverted karyotypes tended to be shorter‐lived and less stress resistant than uninverted karyotypes. We also detected an interaction between karyotype and temperature on survival traits. As In(3R)P influences body size and multiple survival traits, it can be viewed as a ‘supergene’, a cluster of tightly linked loci affecting multiple complex phenotypes. We conjecture that the inversion cline is maintained by fitness trade‐offs and balancing selection across geography; elucidating the mechanisms whereby this inversion affects alternative, locally adapted phenotypes across the cline is an important task for future work.  相似文献   

16.
Collections of D. melanogaster from Japanese populations were analyzed for enzyme and chromosomal polymorphisms. Allelic frequencies at the Adh and alphaGpd loci were compared with polymorphic inversion (In(2L)B, In(2R)C) frequencies in the second chromosome. There was a significant positive correlation between the frequencies of AdhS and In(2L)B, caused by linkage. On the other hand, inversion-free cage populations maintained in the laboratory for a long time showed considerably larger variation in the frequencies of these enzyme alleles, which seem very likely to be a consequence of random drift. Two fitness components of these enzyme and chromosomal variants were measured in two different environmental conditions; neither of the two loci showed heterozygote superiority in viability or productivity, while the inversion heterozygotes showed a superior productivity compared to the corresponding homozygotes in the fluctuating environment. These findings are compatible with the hypothesis that polymorphic isozyme genes are maintained by random drift of neutral genes in natural populations, and that association with linked inversions is a historical accident.  相似文献   

17.
Abstract.— Many organisms show latitudinal variation for various genetically determined traits. Such clines may involve neutral variation and originate from historical events or their maintenance may be explained by selection. For Drosophila melanogaster , latitudinal variation for allozymes, inversions, and quantitative traits has been found on several continents. We sampled D. melanogaster populations in Panama and along a transect of 40 latitudinal degrees on the west coast of South America. Negative correlations with latitude were found for Adhs and αGpdhF allele frequencies and for the frequency of the cosmopolitan inversion In(2L)t in AdhsαpdhF chromosomes. A positive correlation existed between wing length and latitude. Significant correlations were found between these traits and climatic variables like temperature and rainfall. The observed clines show considerable resemblance to those found on other continents. Gametic disequilibrium between Adhs and αGpdhF occurred predominantly at higher latitudes and was caused by the presence of In(2L)t . The reasons for the clinal distributions are discussed and it is argued that selection is the most likely explanation. However, the exact nature of the selective force and the interactions of allozymes with each other and with In(2L)t are complex and not fully understood. In tropical regions In(2L)t -containing genotypes have higher fitness than ST/ST and Adh and αGpdh hitchhike with the inversion, but there is also evidence for balancing selection at the Adh locus.  相似文献   

18.
Intraspecific Drosophila studies suggest that resistance to heat and cold stresses are largely independent and that correlations across life cycle stages are low whereas comparisons of Drosophila species indicate correlations between heat and cold resistance as well as between resistance levels in different life cycle stages. These inconsistent results may reflect differences in associations among traits at the interspecific and intraspecific levels or interspecific correlations arising because of correlated selection pressures. These alternatives were tested using Drosophila serrata, D. birchii and hybrids derived from these species. Variation among hybrid lines and families was used to test associations at the interspecific level while intraspecific variation was examined using isofemale lines ol'D. serrata. There was a significant association between adult heat knockdown time at 38oC and adult cold resistance in one set of hybrid lines. An association between female knockdown resistance to heat and larval heat resistance was also evident in one set of hybrids. Resistance to heat and cold at the larval stage were not correlated at either the intraspecific or interspecific levels. At the intraspecific level, larval heat resistance and two measures of adult heat resistance were uncorrected. Moreover, adult and larval cold resistance measures were not correlated at either the intraspecific or interspecific levels. These results suggest that there arc no associations between resistance to heat and cold extremes and that extreme temperature resistance is largely independent across life cycle stages at both the intraspecific and interspecific levels. Species associations may therefore arise from correlated selection pressures rather than trait correlations.  相似文献   

19.
20.
Rako L  Anderson AR  Sgrò CM  Stocker AJ  Hoffmann AA 《Genetica》2006,128(1-3):373-384
In Drosophila melanogaster, inversion In(3R)Payne increases in frequency towards low latitudes and has been putatively associated with variation in size and thermal resistance, traits that also vary clinally. To assess the association between size and inversion, we obtained isofemale lines of inverted and standard karyotype of In(3R)Payne from the ends of the Australian D. melanogaster east coast cline. In the northern population, there was a significant association between In(3R)Payne and body size, with standard lines from this population being relatively larger than inverted lines. In contrast, the inversion had no influence on development time or cold resistance. We strengthened our findings further in a separate study with flies from populations from the middle of the cline as well as from the cline ends. These flies were scored for wing size and the presence of In(3R)Payne using a molecular marker. In females, the inversion accounted for around 30% of the size difference between cline ends, while in males the equivalent figure was 60%. Adaptive shifts in size but not in the other traits are therefore likely to have involved genes closely associated with In(3R)Payne. Because the size difference between karyotypes was similar in different populations, there was no evidence for coadaptation within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号