首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of intermediate filament proteins in vascular tissue cells has been examined by immunofluorescence microscopy on frozen sections of the aortic wall of diverse vertebrates (rat, cow, human and chicken) and by gel electrophoresis of cytoskeletal proteins from whole aortic tissue or from stripped tunica media of cow and man. Most cells of the aortic wall in these species contain vimentin filaments, including smoooth muscle cells of the tunica media. In addition, we have observed aortic cells that are positively stained by antibodies to desmin. The presence of desmin in aortic tissue has also been demonstrated by gel electrophoresis for rat, cow and chicken. In aortic tissue some smooth muscle cells contain both types of intermediate filament proteins, vimentin and desmin. Bovine aorta contains, besides cells in which vimentin and desmin seem to co-exist, distinct bundles of smooth muscle cells, located in outer regions of the tunica media, which contain only desmin. The results suggest that (i) intermediate-sized filaments of both kinds, desmin and vimentin, can occur in vascular smooth muscle in situ and (ii) smooth muscle cells of the vascular system are heterogeneous and can be distinguished by their intermediate filament proteins. The finding of different vascular smooth muscle cells is discussed in relation to development and differentiation of the vascular system.  相似文献   

2.
Fluorescently labeled desmin was incorporated into intermediate filaments when microinjected into living tissue culture cells. The desmin, purified from chicken gizzard smooth muscle and labeled with the fluorescent dye iodoacetamido rhodamine, was capable of forming a network of 10-nm filaments in solution. The labeled protein associated specifically with the native vimentin filaments in permeabilized, unfixed interphase and mitotic PtK2 cells. The labeled desmin was microinjected into living, cultured embryonic skeletal myotubes, where it became incorporated in straight fibers aligned along the long axis of the myotubes. Upon exposure to nocodazole, microinjected myotubes exhibited wavy, fluorescent filament bundles around the muscle nuclei. In PtK2 cells, an epithelial cell line, injected desmin formed a filamentous network, which colocalized with the native vimentin intermediate filaments but not with the cytokeratin networks and microtubular arrays. Exposure of the injected cells to nocadazole or acrylamide caused the desmin network to collapse and form a perinuclear cap that was indistinguishable from vimentin caps in the same cells. During mitosis, labeled desmin filaments were excluded from the spindle area, forming a cage around it. The filaments were partitioned into two groups either during anaphase or at the completion of cytokinesis. In the former case, the perispindle desmin filaments appeared to be stretched into two parts by the elongating spindle. In the latter case, a continuous bundle of filaments extended along the length of the spindle and appeared to be pinched in two by the contracting cleavage furrow. In these cells, desmin filaments were present in the midbody where they gradually were removed as the desmin filament network became redistributed throughout the cytoplasm of the spreading daughter cells.  相似文献   

3.
Using a vimentin-free expression system we were able to demonstrate that the carboxy terminus of desmin is necessary for filament assembly in the living cell. Desmin subunits missing only 4 carboxy-terminal residues of their rod domain are incapable of homopolymeric filament assembly. Moreover, even single amino acid substitutions in the conserved carboxy-terminal part of the rod domain prevent desmin subunits from homopolymeric filament assembly. Desmin subunits missing 18 or more carboxy-terminal residues of their rod domain (including the complete conserved carboxy-terminal region) are unstable in cells devoid of intact type III intermediate filaments (IFs). Interaction with an intact type III IF, however, stabilizes these mutated desmin subunits. Expression of a desmin subunit missing both its non-helical end domains in vimentin-containing cells disrupts the endogenous vimentin network completely.  相似文献   

4.
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.  相似文献   

5.
p21-activated kinase (PAK) and Rho-associated kinase (Rho-kinase) have been shown to induce Ca(2+)-independent contraction of smooth muscle. PAK-induced contraction of Triton-skinned smooth muscle correlates with increased phosphorylation of caldesmon and desmin, although the role of desmin phosphorylation has remained obscure. Here we report that desmin serves as an excellent substrate for PAK in vitro. PAK phosphorylated desmin in a GTP. Cdc42/Rac-dependent manner. Phosphorylation of desmin by PAK dramatically inhibited its filament-forming ability. PAK phosphorylated mainly serine residues of the head domain of desmin, and the major phosphorylation sites differed from those for Rho-kinase. These results suggest that different site-specific phosphorylation of desmin via two divergent protein kinases downstream of Rho family GTPases would seem to increase the regulatory potential for organization of desmin filaments.  相似文献   

6.
Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.  相似文献   

7.
Surfactant protein A (SP-A), a member of the collectin family that modulates innate immunity, has recently been involved in the physiology of reproduction. Consistent with the activation of ERK-1/2 and COX-2 induced by SP-A in myometrial cells, we reported previously the presence of two major proteins recognized by SP-A in these cells. Here we identify by mass spectrometry one of these SP-A targets as the intermediate filament (IF) desmin. In myometrial preparations derived from desmin-deficient mice, the absence of binding of SP-A to any 50 kDa protein confirmed the identity of this SP-A-binding site as desmin. Our data based on partial chymotrypsin digestion of pure desmin suggested that SP-A recognizes especially its rod domain, which is known to play an important role during the assembly of desmin into filaments. In line with that, electron microscopy experiments showed that SP-A inhibits in vitro the polymerization of desmin filaments. SP-A also recognized in vitro polymerized filaments in a calcium-dependent manner at a physiological ionic strength but not the C1q receptor gC1qR. Furthermore, Texas Red-labeled SP-A colocalized with desmin filaments in myometrial cells. Interestingly, vimentin, the IF characteristic of leukocytes, is one of the major proteins recognized by SP-A in protein extracts of U937 cells after PMA-induced differentiation of this monocytic cell line. Interaction of SP-A with vimentin was further confirmed using recombinant vimentin in solid-phase binding assays. The ability of SP-A to interact with desmin and vimentin, and to prevent polymerization of desmin monomers, shed light on unexpected and wider biological roles of this collectin.  相似文献   

8.
Biochemical investigations of intermediate filaments in soluble or partially assembled forms are often difficult to perform due to the unusual insolubility of most types of intermediate filaments. However, desmin is soluble in 10 mM Tris. The structure of partially soluble native desmin was studied by gel-filtration chromatography and electron microscopy. The lowest molecular weight species of soluble desmin is a flexible rod averaging 53 nm in length. Calculations of f/fmin values from a previously published sedimentation value allowed comparisons with other elongated proteins. These values and the dimensions obtained from electron microscopy suggest that the desmin protofilament contains three or four protein subunits.  相似文献   

9.
Plectin is a versatile cytoskeletal linker protein that preferentially localizes at interfaces between intermediate filaments and the plasma membrane in muscle, epithelial cells, and other tissues. Its deficiency causes muscular dystrophy with epidermolysis bullosa simplex. To better understand the functional roles of plectin beneath the sarcolemma of skeletal muscles and to gain some insights into the underlying mechanism of plectin-deficient muscular dystrophy, we studied in vivo structural and molecular relationships of plectin to subsarcolemmal cytoskeletal components, such as desmin, dystrophin, and vinculin, in rat skeletal muscles. Immunogold electron microscopy revealed that plectin fine threads tethered desmin intermediate filaments onto subsarcolemmal dense plaques overlying Z-lines and I-bands. These dense plaques were found to contain dystrophin and vinculin, and thus may be the structural basis of costameres. The in vivo association of plectin with desmin, (meta-)vinculin, dystrophin, and actin was demonstrated by immunoprecipitation experiments. Treatment of plectin immunoprecipitates with gelsolin reduced actin, dystrophin, and (meta-)vinculin but not desmin, implicating that subsarcolemmal actin could partly mediate the interaction between plectin and dystrophin or (meta-)vinculin. Altogether, our data suggest that plectin, along with desmin intermediate filaments, might serve a vital structural role in the stabilization of the subsarcolemmal cytoskeleton.  相似文献   

10.
Plectin is a versatile linker protein which is associated with various types of cytoskeletal components and/or filaments including intermediate filaments. To better understand the functional roles of plectin in smooth muscle cells, we examined the distribution of plectin and other related proteins in rat colon smooth muscles by confocal laser and electron microscopy. The sarcolemma of smooth muscle cells exhibits two ultrastructurally distinct domains, domains associated with dense plaques and caveola-rich domains. Staining with anti-plectin and anti-desmin antibodies showed that plectin was localized along the sarcolemma in an intermittent manner and desmin was distributed in the sarcoplasm and intermittently at the cell periphery where it was codistributed with desmin. Plectin exhibited complementary and non-overlapping distribution to caveolin-1 and dystrophin, components of caveola domains, whereas plectin was codistributed with vinculin, talin and integrin beta1, components of dense plaques. Plectin was also codistributed with beta2-chain laminin but not with beta1-chain laminin. Electron microscopic observations on the sarcolemma revealed close association of intermediate filaments with dense plaques. Correlated confocal and electron microscopy clearly demonstrated that anti-plectin fluorescence corresponded to dense plaques but not to caveola domains in electron microscopic images. These findings indicate that plectin is confined to dense plaques to which desmin intermediate filaments may be anchored in rat colon smooth muscle cells.  相似文献   

11.
Cytoskeletal intermediate filaments were studied in muscular dysgenesis (mdg) and tetrodotoxin-treated inactive mouse embryo muscle cultures during myofibrillogenesis. Both muscular dysgenesis and tetrodotoxin-treated muscles are characterized in vitro by a total lack of contractile activity and an abnormal development of myofibrils. We studied the organization of the microtubule and intermediate filament networks with immunofluorescence, using anti-tubulin, anti-vimentin, and anti-desmin antibodies during normal and mdg/mdg myogenesis in vitro. Mdg/mdg myotubes present a heterogeneous microtubule network with scattered areas of decreased microtubule density. At the myoblast stage, cells expressed both vimentin and desmin. After fusion only desmin expression is revealed. In mutant myotubes the desmin network remains in a diffuse position and does not reorganize itself transversely, as it does during normal myogenesis. The absence of a mature organization of the desmin network in mdg/mdg myotubes is accompanied by a lack of organization of myofibrils. The role of muscle activity in the organization of myofibrils and desmin filaments was tested in two ways: (i) mdg/mdg myotubes were rendered active by coculturing with normal spinal cord cells, and (ii) normal myotubes were treated with tetrodotoxin (TTX) to suppress contractions. Mdg/mdg innervated myotubes showed cross-striated myofibrils, whereas desmin filaments remained diffuse. TTX-treated myotubes possessed disorganized myofibrils and a very unusual pattern of distribution of desmin: intensively stained desmin aggregates were superimposed upon the diffuse network. We conclude, on the basis of these results, that myofibrillar organization does not directly involve intermediate filaments but does need contractile activity.  相似文献   

12.
It has been documented that mutations in the human desmin gene lead to a severe type of myofibrillar myopathy, termed more specifically desminopathy, which affects cardiac and skeletal as well as smooth muscle. We showed recently that 14 recombinant versions of these disease-causing desmin variants, all involving single amino acid substitutions in the alpha-helical rod domain, interfere with in vitro filament formation at distinct stages of the assembly process. We now provide mechanistic details of how these mutations affect the filament assembly process by employing analytical ultracentrifugation, time-lapse electron microscopy of negatively stained and glycerol-sprayed/low-angle rotary metal-shadowed samples, quantitative scanning transmission electron microscopy, and viscometric studies. In particular, the soluble assembly intermediates of two of the mutated proteins exhibit unusually high s-values, compatible with octamers and other higher-order complexes. Moreover, several of the six filament-forming mutant variants deviated considerably from wild-type desmin with respect to their filament diameters and mass-per-length values. In the heteropolymeric situation with wild-type desmin, four of the mutant variants caused a pronounced "hyper-assembly", when assayed by viscometry. This indicates that the various mutations may cause abortion of filament formation by the mutant protein at distinct stages, and that some of them interfere severely with the assembly of wild-type desmin. Taken together, our findings provide novel insights into the basic intermediate filament assembly mechanisms and offer clues as to how amino acid changes within the desmin rod domain may interfere with the normal structural organization of the muscle cytoskeleton, eventually leading to desminopathy.  相似文献   

13.
Previous studies have shown that desmin, the muscle-specific intermediate filament protein, is a substrate for the endogenous muscle arginine-specific mono-ADP-ribosyltransferase and that ADP-ribosylation inhibits assembly of desmin into intermediate filaments (Huang et al., Exp. Cell Res. 226, 147-153, 1996). In this paper, the effects of mono-ADP-ribosylation on assembly and disassembly of desmin intermediate filaments were further characterized. First, it was found that ADP-ribosylated desmin does not coassemble with unmodified desmin and has no effect on assembly of unmodified desmin. Second, incubation of assembled desmin filaments with mono-ADP-ribosyltransferase and NAD+ results in disassembly of the filaments. Finally, the structural components of the attached ADP-ribose moiety responsible for altering the assembly of desmin into filaments were investigated by a stepwise cleavage of ADP-ribose with snake venom phosphodiesterase and alkaline phophatase, followed by analysis of assembly. The reactions catalyzed by these two enzymes were established using a desmin peptide as a substrate. Our results show that ribosylated desmin, but not phosphoribosylated desmin, was able to self-assemble into intermediate filaments, suggesting that the presence of a phosphate group is needed to alter desmin's assembly ability.  相似文献   

14.
《The Journal of cell biology》1990,111(5):2063-2075
Intermediate filament (IF) proteins have a common structural motif consisting of an alpha-helical rod domain flanked by non-alpha-helical amino-terminal head and carboxy-terminal tail domains. Coiled-coil interaction between neighboring rod domains is though to generate the backbone of the 10-nm filament. There must also be other interactions between subunits to bring them into alignment and to effect elongation of the filament, but these are poorly understood. To examine the involvement of the tail domain in filament structure and stabilization, we have studied the interaction between a synthetic peptide corresponding to residues 442-450 of avian desmin, and authentic desmin protein. The potential importance of this region lies in its hydrophilic nature and its high degree of homology among the Type III IF proteins and cytokeratins 8 and 18. The peptide, D442-450, binds to a 27-residue region between lys-436 and leu-463, the carboxy terminus. The presence of the peptide during assembly causes the filaments to appear much more loosely packed than normal desmin IF. We have also generated polyclonal antibodies against this peptide and attempted to localize this portion of the tailpiece along desmin IFs by immunological procedures. By immunoblotting, we found that anti-D442- 450 antibodies recognize desmin and only those proteolytic fragments that contain the tailpiece. In contrast, the antibodies do not label any structure in adult gizzard smooth muscle and skeletal muscle myofibrils in immunofluorescence experiments during which conventional antidesmin antibodies do. At the ultrastructural level, anti-D442-450 antibodies label free desmin tetramers but not desmin IFs. These results show that, as part of an assembled IF, the epitope of anti-D442- 450 is inaccessible to the antibodies, and suggest that either the tailpiece of an IF protein may not be entirely peripheral to the filament backbone, or the interaction between end domains during assembly masks this particular region of the IF molecule.  相似文献   

15.
Filaments with a diameter of 80-120 A have been prepared from 14-d-old chick embryonic skeletal muscle, using a physiological salt solution and gel filtration chromatography. The filaments obtained are composed of the two known muscle intermediate-filament proteins, vimentin and desmin, as well as the vimentin- and desmin-associated high molecular weight protein, synemin (230,000 mol. wt). In addition, they contain a previously unidentified high molecular weight protein (280,000 mol wt) which differs from synemin by isoelectric point, molecular weight, and immunological reactivity. Immunofluorescence on cultured myogenic cells,using antisera to the 280,000-dalton polypeptide, has revealed that this protein has the same spatial distribution as desmin, vimentin, and synemin in both early myotubes, where it associates with cytoplasmic filaments, and late in myotubes, where it is associated with myofibril Z lines. Examination by immunofluorescence of frozen sections of developing embryonic skeletal muscle reveals a gradual diminution in the presence of the 280,000-dalton protein. The 280,000-dalton protein is undetectable in adult skeletal and smooth muscle, as shown by immunofluorescence and immunoautoradiography. In chick embryonic fibroblasts grown in tissue culture, only a subpopulation of the cells is reactive with antibodies to the 280,000-dalton protein even though all these cells contain vimentin. In the reactive cells, vimentin and the 280,000-dalton polypeptide exhibit an indistinguishable cytoplasmic filamentous network, which aggregates into filamentious bundles when the cells are exposed to colcemid. These results suggest that this newly identified high molecular weight protein is closely associated with intermediate filaments containing either vimentin alone or vimentin, desmin and synemin. The expression of this protein appears to be developmentally regulated and does not appear to parallel the expression of any of the other three intermediate-filament proteins. The absence of the 280,000-dalton polypeptide in adult muscle cells and its gradual reduction during development implies that is probably not required for the maintenance of Z-disk structure after the assembly of the sarcomere.  相似文献   

16.
Desmin, being a major intermediate filament of mature muscle cell, interacts with mitochondria within the cell and participates in mitochondria proper localization. The goal of the present study was to assess the effect of aggregate-prone and non-aggregate-prone desmin mutations on mitochondrial calcium uptake. Primary murine satellite cells were transduced with lentiviruses carrying desmin in wild type or mutant form, and were induced to differentiate into myotubes. Four mutations resulting in different degree of desmin aggregates formation were analyzed. Tail domain mutation Asp399Tyr has the mildest impact on desmin filament polymerization, rod domain mutation Ala357Pro causes formation of large aggregates composed of filamentous material, and Leu345Pro and Leu370Pro are considered to be the most severest in their impact on desmin polymerization and structure. For mitochondrial calcium measurement cells were loaded with rhod 2-AM. We found that aggregate-prone mutations significantly decreased [Ca2+]mit, whereas non-aggregate-prone mutations did not decrease [Ca2+]mit. Moreover aggregate-prone desmin mutations resulted in increased resting cytosolic [Ca2+]. However this increase was not accompanied by any alterations in sarcoplasmic reticulum calcium release. We suggest that the observed decline in [Ca2+]mit was due to desmin aggregate accumulation resulting in the loss of desmin mitochondria interactions.  相似文献   

17.
Six cases of glomus tumor in superficial soft tissues were investigated immunohistochemically for the presence of different types of intermediate filaments, myosin, laminin, a basal lamina glycoprotein, and the endothelial cell markers, factor VIII-related antigen (FVIIIR:Ag) and Ulex europaeus I lectin (UEA I) binding sites. The tumor cells appeared to contain only vimentin, the fibroblast-type of intermediate filament protein. They were also positive for myosin, and were invested by laminin-positive basal lamina-like material, but did not express endothelial cell markers. Ultrastructural studies revealed prominent arrays of both intermediate filaments and microfilaments, the latter resembling the myofilament bundles seen in smooth muscle cells. The results show that glomus tumor cells resemble smooth muscle cells in their content of myosin and in some ultrastructural features. In their lack of desmin, however, they differ from most types of smooth muscle cell, although they are similar in this respect to some vascular smooth muscle cells.  相似文献   

18.
E Lazarides  D R Balzer 《Cell》1978,14(2):429-438
The extent of invariance and heterogeneity in desmin, the major component of the muscle form of 100 Å filaments, has been investigated in avian and mammalian muscle and nonmuscle cells with two-dimensional gel electrophoresis and indirect immunofluorescence. Desmin from chick, duck and quail, smooth, skeletal and cardiac muscle cells is resolved into two isoelectric variants, α and β, with each possessing the same charge and electrophoretic mobility in all three avian species irrespective of muscle type. Guinea pig and rat muscle desmin resolves into only one variant; it also possesses the same charge and electrophoretic mobility in the two mammalian species, but it is more acidic and slower in electrophoretic mobility than the two avian variants.In immunofluorescence, desmin is localized together with α-actinin along myofibril Z lines. Antibodies to chick smooth muscle desmin, prepared against the protein purified by preparative SDS gel electrophoresis prior to immunization, cross-react with myofibril Z lines in all three avian species. These antibodies do not cross-react with either rat or guinea pig myofibril Z lines. Similarly, they do not cross-react with avian or mammalian nonmuscle cells grown in tissue culture and known to contain cytoplasmic 100 Å filaments.These results demonstrate that desmin is highly conserved within avian muscle cells and within mammalian muscle cells. It is, however, both biochemically and immunologically distinguishable between avian and mammalian muscle cells, and between muscle and nonmuscle cells. We conclude that there are biochemically and immunologically specific forms of desmin for avian and mammalian muscle cells. Furthermore, within a particular vertebrate species, there are at least two separate classes of 100 Å filaments: the muscle class whose major component is desmin, and the nonmuscle class whose major component is distinct from desmin. Taking into consideration the immunological specificity reported by other laboratories for the 100 Å filaments in glial cells, for neurofilaments and for the epidermal 80 Å keratin filaments, we propose that a given vertebrate species contains at least four major distinguishable classes of 100 Å filaments: muscle 100 Å filaments (desmin filaments), glial filaments, neurofilaments and epidermal keratin filaments.  相似文献   

19.
Caspase cleavage of key cytoskeletal proteins, including several intermediate filament proteins, triggers the dramatic disassembly of the cytoskeleton that characterizes apoptosis. Here we describe the muscle-specific intermediate filament protein desmin as a novel caspase substrate. Desmin is cleaved selectively at a conserved Asp residue in its L1-L2 linker domain (VEMD downward arrow M(264)) by caspase-6 in vitro and in myogenic cells undergoing apoptosis. We demonstrate that caspase cleavage of desmin at Asp(263) has important functional consequences, including the production of an amino-terminal cleavage product, N-desmin, which is unable to assemble into intermediate filaments, instead forming large intracellular aggregates. Moreover, N-desmin functions as a dominant-negative inhibitor of filament assembly, both for desmin and the structurally related intermediate filament protein vimentin. We also show that stable expression of a caspase cleavage-resistant desmin D263E mutant partially protects cells from tumor necrosis factor-alpha-induced apoptosis. Taken together, these results indicate that caspase proteolysis of desmin at Asp(263) produces a dominant-negative inhibitor of intermediate filaments and actively participates in the execution of apoptosis. In addition, these findings provide further evidence that the intermediate filament cytoskeleton has been targeted systematically for degradation during apoptosis.  相似文献   

20.
Desmin is a muscle-specific protein and a constitutive subunit of the intermediate filaments (IF) in skeletal, cardiac and smooth muscles. It is an early marker of skeletal muscle myogenesis. We have characterized a clone of desmin cDNA from an embryonic zebrafish (Danio rerio) cDNA library. The full-length cDNA comprised 1798 nucleotides, encoding a protein of 473 amino acids. The predicted amino acid sequence of the zebrafish desmin shares a high degree of similarity to other vertebrate desmins, but also contains a sequence at the carboxyl terminal of the tail domain that is unique to the zebrafish. It carries many features which are distinctive of IF subunit proteins. These include the T/SSYRRXF/Y motif in the head domain, and the intermediate filament signature consensus, [I/V]-X-[T/A/C/I]-Y-[R/K/H]-X-[L/M]-L-[D/E], located in the carboxyl terminus of the central helical rod. Unlike other 3' UTR sequences, the 3' UTR of the zebrafish cDNA sequence has two CAYUG elements flanking a single polyadenylation site. The temporal and spatial expression patterns of desmin mRNA during early zebrafish development were studied. The onset of desmin expression occurred at the 1-3 somite stage (11 hpf). It increased throughout somitogenesis, with maximum expression at the Prim-6 stage (25 hpf), and decreasing expression towards the protruding-mouth stage (72 hpf). Desmin mRNA was initially localised exclusively to the somites, but was subsequently also detected in other musculature in the developing heart and fins. The onset of expression and the spatial localization of desmin mRNA in the zebrafish coincides with that reported for MyoD and myogenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号