首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Eph receptor tyrosine kinases and their ephrin ligands are involved in various signalling pathways and mediate critical steps of a wide variety of physiological and pathological processes. Increasing experimental evidence demonstrates that both Eph receptor and ephrin ligands are overexpressed in a number of human tumours, and are associated with tumour growth, invasiveness and metastasis. In this regard, the Eph/ephrin system provides the foundation for potentially exciting new targets for anticancer therapies for Eph‐expressing tumours. The purpose of this review is to outline current advances in the role of Eph receptors and ephrin ligands in cancer, and to discuss novel therapeutic approaches of anticancer therapies.  相似文献   

2.
The Eph receptors and their ephrin ligands play crucial roles in a large number of cell–cell interaction events, including those associated with axon pathfinding, neuronal cell migration and vasculogenesis. They are also involved in the patterning of most tissues and overall cell positioning in the development of the vertebrate body plan. The Eph/ephrin signaling system manifests several unique features that differentiate it from other receptor tyrosine kinases, including initiation of bi-directional signaling cascades and the existence of ligand and receptor subclasses displaying promiscuous intra-subclass interactions, but very rare inter-subclass interactions. In this review we briefly discuss these features and focus on recent studies of the unique and expansive high-affinity Eph/ephrin assemblies that form at the sites of cell–cell contact and are required for Eph signaling initiation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

3.
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.  相似文献   

4.
《Cell reports》2023,42(7):112670
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   

5.
Eph–ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph–ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph–ephrin complexes. Analysis of the Eph–ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph–ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein–protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph–ephrin complex.  相似文献   

6.
Eph receptors comprise the largest family of receptor tyrosine kinases. They are classified into an A family and a B family on the basis of the characteristic properties of the corresponding ephrin ligands which are either GPI-anchored peripheral membrane molecules (A class ephrins) or transmembrane molecules (B class ephrins). Eph receptors and ephrin ligands were originally identified as neuronal pathfinding molecules. Yet, gene targeting experiments in mice have identified the EphB/ephrinB system as critical and rate-limiting determinant of arterio-venous differentiation during embryonic vascular development. Identification of vascular EphB/ephrinB functions has in the last few years stimulated two emerging fields of vascular biology research, namely (1) the molecular analysis of the structural and functional mechanisms of arterio-venous differentiation, and (2) the molecular study of the commonalities between vascular and neuronal guidance and patterning mechanisms. This review summarizes the current understanding of vascular Eph receptor and ephrin ligand functions and provides an overview of emerging roles of the Eph/ephrin system in controlling tumor and vascular functions during tumorigenesis and tumor progression.  相似文献   

7.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

8.
Wu XW  Li M 《生理科学进展》2005,36(3):259-261
Eph受体酪氨酸激酶及其配体ephrin广泛参与神经系统的发育,如轴突导向、细胞迁移、体节形成和血管生成。最近研究显示的Ephephrin在突触的定位提示其与突触可塑性有关。Ephephrin对成年神经系统的可塑性、学习和记忆,以及神经损伤后的再生可能具有重要的调节作用。  相似文献   

9.
Eph receptors and ephrins in neural development   总被引:9,自引:0,他引:9  
Ephrins, ligands for the Eph family of receptor tyrosine kinases, are pivotal players in many developmental phenomena in both the central and peripheral nervous systems. Ephrins appear to act typically, but not exclusively, as repellents throughout development to influence axon pathfinding and topographic mapping, as well as restricting cell migration and intermingling. Recent findings are beginning to characterize the function and signaling of ephrins, as well as major roles for them in other tissues.  相似文献   

10.
The differentiation of murine trophoblast giant cells (TGCs) is well characterised at the molecular level and, to some extent, the cellular level. Currently, there is a rudimentary understanding about factors regulating the cellular differentiation of secondary TGCs. Using day 8.5 p.c.-ectoplacental cone (EPC) explant in serum-free culture, we have found parathyroid hormone-related protein (PTHrP) to regulate cellular changes during TGC differentiation. PTHrP greatly stimulated the formation and organisation of actin stress fibres and actin expression in trophoblast outgrowth. This coincided with changing cell shape into a flattened/fibroblastic morphology, suppression of E-cadherin expression, and increased cell spreading in culture. PTHrP also increased the nuclear staining of beta-catenin and, similar to activator protein-2gamma (AP-2gamma), showed microtubule-dependent nuclear localisation in vitro. These cellular and behavioural changes correlated with changes in the expression of RhoGTPases and in both expression and phosphorylation of Eph/Ephrin kinases. The effects of PTHrP on trophoblast cellular differentiation were abolished after blocking its action. In conclusion, PTHrP provides an excellent example of the extrinsic factors that, through their network of activities, plays an important role in cellular differentiation of secondary TGCs.  相似文献   

11.
12.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin‐B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor‐bearing) and dorsal (ephrin‐B‐bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5–10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin‐B1 ectodomains cause slow (30–60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor‐ligand binding, endocytosis occurs in the reverse direction (EphB2‐Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B‐type Eph/ephrin‐mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 323–336, 2003  相似文献   

13.
Eph receptors and ephrins: effectors of morphogenesis   总被引:19,自引:0,他引:19  
Eph receptor tyrosine kinases and their ligands, the ephrins, appear to lie functionally at the interface between pattern formation and morphogenesis. We review the role of Eph and ephrin signalling in the formation of segmented structures, in the control of axon guidance and cell migration and in the development of the vasculature. We address the question of how the specificity of response is achieved and discuss the specificity of ephrin-Eph interactions and the significance of structural domains in Eph receptors.  相似文献   

14.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.  相似文献   

15.
16.
Eph receptors and ephrins play important roles in regulating cell migration and positioning during both normal and oncogenic tissue development. Using a surface plasma resonance (SPR) biosensor, we examined the binding kinetics of representative monomeric and dimeric ephrins to their corresponding Eph receptors and correlated the apparent binding affinity with their functional activity in a neuronal growth cone collapse assay. Our results indicate that the Eph receptor binding of dimeric ephrins, formed through fusion with disulfide-linked Fc fragments, is best described using a bivalent analyte model as a two-step process involving an initial monovalent 2:1 binding followed by a second bivalent 2:2 binding. The bivalent binding dramatically decreases the apparent dissociation rate constants with little effect on the initial association rate constants, resulting in a 30- to 6000-fold decrease in apparent equilibrium dissociation constants for the binding of dimeric ephrins to Eph receptors relative to their monomeric counterparts. Interestingly, the change was more prominent in the A-class ephrin/Eph interactions than in the B-class of ephrins to Eph receptors. The increase in apparent binding affinities correlated well with increased activation of Eph receptors and the resulting growth cone collapse. Our kinetic analysis and correlation of binding affinity with function helped us better understand the interactions between ephrins and Eph receptors and should be useful in the design of inhibitors that interfere with the interactions.  相似文献   

17.
Ichthyophis kohtaoensis, a member of the limbless Gymnophiona, has a specialized subterranean burrowing mode of life and a predominantly olfactory-guided orientation. The only visually guided behavior seems to be negative phototaxis. As these animals possess extremely small eyes (only 540 μm in diameter in adults), functional investigations of single retinal cells by electrophysiological methods have so far failed. Therefore, the content and distribution of retinal transmitters have been investigated as indications for a functioning sense organ in an animal that is supposed to be blind. In this study, the organization and development of the dopaminergic system have been examined in the retinae of embryonic, larval, and adult I. kohtaoensis, by using an antiserum against tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway, and an antiserum against dopamine itself. Labeled somata are situated in the inner nuclear layer and in the ganglion cell layer. Dopamine-positive fibers form a dense diffuse plexus, that covers the whole inner plexiform layer, whereas tyrosine hydroxylase-immunoreactive processes show a tendency to arborize in a stratified manner. Tyrosine-hydroxylase-immunolabeled fibers can occasionally be observed in the optic nerve head of larval stages. During ontogenesis and larval development, the distribution of transmitter-expressing cells changes and their number decreases, but no general degeneration of the visual system is detectable. Adult Ichthyophis still have retinal transmitters, indicating that the eyes, although obviously playing a minor role in a subterranean ecological niche, retain all the elements of functioning sense organs. Received: 20 November 1996 / Accepted: 23 February 1997  相似文献   

18.
X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated.  相似文献   

19.
X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated.  相似文献   

20.
The Eph family of receptor tyrosine kinases and their ‘ligands’, the ephrins, have been shown to play key roles in a number of different developmental processes such as cell migration, boundary formation, axon guidance, synapse formation and vasculogenesis. Here, we summarize recent findings derived from investigating the role of the EphA family during development of the retinotectal and vomeronasal projection uncovering a role of ephrin-A molecules as axon guidance receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号