首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

2.
3.
4.
The Eph receptors and their ephrin ligands play crucial roles in a large number of cell–cell interaction events, including those associated with axon pathfinding, neuronal cell migration and vasculogenesis. They are also involved in the patterning of most tissues and overall cell positioning in the development of the vertebrate body plan. The Eph/ephrin signaling system manifests several unique features that differentiate it from other receptor tyrosine kinases, including initiation of bi-directional signaling cascades and the existence of ligand and receptor subclasses displaying promiscuous intra-subclass interactions, but very rare inter-subclass interactions. In this review we briefly discuss these features and focus on recent studies of the unique and expansive high-affinity Eph/ephrin assemblies that form at the sites of cell–cell contact and are required for Eph signaling initiation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

5.
Eph receptor tyrosine kinases (Ephs) and their membrane-anchored ligands (ephrins) form a vital cell communication system capable of bi-directional signaling. This Eph receptor/ephrin system has classically been demonstrated to play a role in development. However, emerging evidence has revealed differential expression of Ephs and ephrins in numerous cancers. Recent studies suggest that this system influences invasive behaviour, promoting a more aggressive and metastatic phenotype. Hence, this minireview summarizes the current understanding of the contribution of both Eph receptors and their ephrin ligands to invasiveness in cancer, as well as their use as potential therapeutic targets.  相似文献   

6.
The Eph receptors and their ligands, the ephrins, are thought to act at points of close cell-cell contact to elicit bi-directional signaling in receptor and ligand expressing cells. However, when cultured in vitro, some A-type ephrins are released from the cell surface and it is unclear if these soluble ephrins participate in Eph receptor activation. We show that soluble ephrin A5 is subject to oligomerization. Ephrins A1 and A5 are substrates for a cross-linking enzyme, tissue transglutaminase, which mediates the formation of oligomeric ephrin. Transglutaminase-cross-linked ephrin binds to A-type Eph receptors, stimulates Eph kinase activity, and promotes invasion and migration of HeLa cells. Transglutaminase-mediated oligomerization of soluble ephrin potentially represents a novel mechanism of forward signaling through Eph receptors and may extend the influence of A-type ephrins beyond cell contact mediated signaling.  相似文献   

7.
促红细胞生成素产生肝细胞(erythropoietin-producing hepatomocellular, Eph)受体是受体酪氨酸激酶家族中数量最多的成员。Eph受体与其配体肝配蛋白(Eph receptor-interacting proteins, ephrin)被统称为Eph家族蛋白,通过独特的双向信号传递在调控正常学习和记忆中扮演重要角色。近年大量的研究发现,Eph家族蛋白在多种神经精神疾病中发挥复杂而又重要的作用,主要是通过改变突触效能,参与神经元形态发生和调控基因表达等方式影响上述疾病的进程。然而,目前靶向Eph家族蛋白对阿尔茨海默症(Alzheimer’s disease, AD)、焦虑症及恐惧症等疾病进行治疗的研究却为数甚微。同时,单纯以β样淀粉蛋白为靶点的抗AD药物开发均遭遇瓶颈。因此,探索Eph家族蛋白在上述疾病中的具体作用变得十分迫切。本文综述了Eph家族蛋白在AD、焦虑症和恐惧症中的最新研究进展,旨在为靶向Eph家族蛋白治疗相关疾病提供新的思路。  相似文献   

8.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

9.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

10.
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.  相似文献   

11.
The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.  相似文献   

12.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

13.
Eph/ephrin signaling in morphogenesis, neural development and plasticity   总被引:13,自引:0,他引:13  
Ephrins are cell-surface-tethered ligands for Eph receptors, the largest family of receptor tyrosine kinases. During development, the Eph/ephrin cell communication system appears to influence cell behavior such as attraction/repulsion, adhesion/de-adhesion and migration, thereby influencing cell fate, morphogenesis and organogenesis. During adulthood, the Eph/ephrin system continues to play roles in tissue plasticity, for example in shaping dendritic spines during neuronal plasticity. Mechanistically, Eph-ephrin repulsive behavior appears to require ligand-receptor internalization and signaling to Rho GTPases.  相似文献   

14.
Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication that regulate axon guidance, long-term potentiation, and stem cell development, among others. By now, many Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Since both the receptor and the ligand are membrane-bound, their interaction leads to the multimerization of both molecules to distinct clusters within their respective plasma membranes, resulting in the formation of discrete signaling centers. In addition, and unique to Eph receptors and ephrins, their interaction initiates bi-directional signaling cascades where information is transduced in the direction of both the receptor- and the ligand-bearing cells. The Ephs and the ephrins are divided into two subclasses, A and B, based on their affinities for each other and on sequence conservation. Crystal structures and other biophysical studies have indicated that isolated extracellular Eph and ephrin domains initially form high-affinity heterodimers around a hydrophobic loop of the ligand that is buried in a hydrophobic pocket on the surface of the receptor. The dimers can then further arrange by weaker interactions into higher-order Eph/ephrin clusters observed in vivo at the sites of cell-cell contact. Although the hetero-dimerization is a universal way to initiate signaling, other extracellular domains of Ephs are involved in the formation of higher-order clusters. The structures also show important differences defining the unique partner preferences of the two ligand and receptor subclasses, namely, how subclass specificity is determined both by individual interacting residues and by the precise architectural arrangement of ligands and receptors within the complexes.  相似文献   

15.
The Eph receptor tyrosine kinases family and their membrane bound ligands, the ephrins, represents a complex signaling network of cell communication for cell sorting during tissue patterning in development and in the normal physiology and homeostasis of adult tissues. This molecular family has adapted to evolving tissue complexity in multicellular organisms through the emergence of more members and complex mechanisms of expression and signaling that result in the fine-tuning of cell positioning. Since their initial identification from an erythropoietin producing hepatocellular (Eph) carcinoma cell line in 1987, Eph/ephrin signaling has been a matter of intensive investigation for their plausible role in cancer. Similarly to their context dependent modus operandi in normal tissues, Eph/ephrin signaling in cancer is an intricate and puzzling network of events that tumors “manage” to their benefit in multiple aspects like cell adhesion to substrate, migration, invasion or growth.  相似文献   

16.
17.
The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.  相似文献   

18.
Eph receptor tyrosine kinases and their ephrin ligands are involved in various signalling pathways and mediate critical steps of a wide variety of physiological and pathological processes. Increasing experimental evidence demonstrates that both Eph receptor and ephrin ligands are overexpressed in a number of human tumours, and are associated with tumour growth, invasiveness and metastasis. In this regard, the Eph/ephrin system provides the foundation for potentially exciting new targets for anticancer therapies for Eph‐expressing tumours. The purpose of this review is to outline current advances in the role of Eph receptors and ephrin ligands in cancer, and to discuss novel therapeutic approaches of anticancer therapies.  相似文献   

19.
The Eph family of receptor tyrosine kinases has been implicated in tumorigenesis as well as pathological forms of angiogenesis. Understanding how to modulate the interaction of Eph receptors with their ephrin ligands is therefore of critical interest for the development of therapeutics to treat cancer. Previous work identified a set of 12-mer peptides that displayed moderate binding affinity but high selectivity for the EphB2 receptor. The SNEW antagonistic peptide inhibited the interaction of EphB2 with ephrinB2, with an IC50 of approximately 15 microm. To gain a better molecular understanding of how to inhibit Eph/ephrin binding, we determined the crystal structure of the EphB2 receptor in complex with the SNEW peptide to 2.3-A resolution. The peptide binds in the hydrophobic ligand-binding cleft of the EphB2 receptor, thus competing with the ephrin ligand for receptor binding. However, the binding interactions of the SNEW peptide are markedly different from those described for the TNYL-RAW peptide, which binds to the ligand-binding cleft of EphB4, indicating a novel mode of antagonism. Nevertheless, we identified a conserved structural motif present in all known receptor/ligand interfaces, which may serve as a scaffold for the development of therapeutic leads. The EphB2-SNEW complex crystallized as a homodimer, and the residues involved in the dimerization interface are similar to those implicated in mediating tetramerization of EphB2-ephrinB2 complexes. The structure of EphB2 in complex with the SNEW peptide reveals novel binding determinants that could serve as starting points in the development of compounds that modulate Eph receptor/ephrin interactions and biological activities.  相似文献   

20.
Excitatory Eph receptors and adhesive ephrin ligands   总被引:10,自引:0,他引:10  
Ephrins are cell surface associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance, cell migration, topographic mapping and angiogenesis. During the past year, Eph receptors have been shown to associate with glutamate receptors in excitatory neurons, suggesting a role in synapse formation or function. Moreover, ephrin/Eph signaling appears to regulate neural stem cell proliferation and migration in adult mouse brains. The mode of action of ephrin/Ephs has been expanded from repulsion to adhesion and from cell surface attachment to regulated cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号