首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paramecium cells were selected which received the entire parental macronucleus at fission and thus started the cell cycle with twice the normal post-fission DNA content. During each of the subsequent two cell cycles the cells synthesized approximately as much DNA as did control cells. The amount of excess macronuclear DNA was consequently halved during each cell cycle. The minimum pre-fission DNA content was just larger than the mean post-replication DNA amount, confirming that a similar amount of DNA, approximately equal to the mean post-fission DNA content of the non-selected population, was synthesized in macronuclei, regardless of the post-fission DNA content. These observations confirm a model for DNA content regulation previously devised for Paramecium and are inconsistent with DNA content regulation schemes proposed for other ciliates. The increased DNA content has no effect either on the subsequent total protein content of pre-fission cells, or on the rate of cell growth. This suggests that the rate of cell growth is limited by the size of the cell when the macronuclear gene-dosage is equal to or greater than that in normal cells. The results also suggest that the amount of DNA synthesized within an interfission period is also limited by the size of the cell and is proportional to the cell mass. Paramecium does not require a fixed nucleocy oplasmic ratio as a pre-condition either for cell division, or, by inference, for initiation of DNA synthesis.  相似文献   

2.
In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In Paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium. DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions.  相似文献   

3.
4.
Daughter cells of the chlorococcal algaScenedesmus quadricauda incubated under photosynthesizing conditions in a nitrogen-free medium did not make any progress in the cell cycle. Photosynthetic starch formation continued for a period corresponding to a half of the cell cycle and then levelled off. Protein synthesis was very slow and it did not surpass double the initial amount. RNA content decayed from the start of treatment and approached about 2 pg/cell. When a synchronous population was deprived of nitrogen or of light in the middle of the cell cycle RNA synthesis stopped immediately or very soon afterwards and, in spite ofabundant intracellular nitrogen reserves, RNA content slowly declined. This degradation was much extensive in nitrogen starved cells where, eventually, the RNA content attained about half the starting value. In both experimental variants, DNA replications started at the same time as in control culture, but the final amount of DNA attained only half the control value. Protein synthesis stopped immediately in the dark. In the nitrogen-starved cells, it continued for several hours and protein content increased about 70 % of the amount present at the start of starvation. The number of daughter cells formed was proportional to the final protein content in the nitrogen-and light-deprived cells (corresponding division numbers were 6 and 4, respectively). Upon refeeding of daughter cells formed under nitrogen starvation, RNA synthesis started immediately, while protein synthesis displayed a lag of about 5 h. DNA replications were triggered at the time when the ratio of RNA to DNA content attained the same value as in the control culture.  相似文献   

5.
The cell cycle kinetics of NHIK 3025 cells, synchronized by mitotic selection, was studied in the presence of cycloheximide at concentrations (0.125-1.25 μM) which inhibited protein synthesis partially and slowed down the rate of cell cycle traverse. The median cell cycle duration was equal to the protein doubling time in both the control cells and in the cycloheximide-treated cultures at all drug concentrations. This conclusion was valid whether protein synthesis was continuously depressed by cycloheximide throughout the entire cell cycle, or temporarily inhibited during shorter periods at various stages of the cell cycle. These results may indicate that cell division does not take place before the cell has reached a critical size, or has completed a protein accumulation-dependent sequence of events. When present throughout the cell cycle, cycloheximide increased the median G1 duration proportionally to the total cell cycle prolongation. However, the entry of cells into S, once initiated, proceeded at an almost unaffected rate even at cycloheximide concentrations which reduced the rate of protein synthesis 50%. The onset of DNA synthesis seemed to take place in the cycloheximide-treated cells at a time when the protein content was lower than in the control cells. This might suggest that DNA synthesis in NHIK 3025 cells is not initiated at a critical cell mass.  相似文献   

6.
Cotton fiber cells elongate without dividing to form economically valuable spinnable fiber. Reports of the ploidy level of fiber cells are variable. Early reports indicated an increase in nuclear DNA content in young fibers; however, subsequent reports failed to observe such a significant increase in ploidy level. Evaluation and analysis of genes involved in regulation of DNA synthesis and other aspects of cell cycle regulation identified relevant genes that were present in fiber cells though usually at low levels. We report the isolation and characterization of another gene likely to be involved in cell cycle/DNA synthesis control. This gene was similar to a gene from Medicago species that controls entry into anaphase by regulating the activity of the anaphase promoting complex ability to ubiquinate selected proteins. The cotton gene was composed of nine exons and the deduced translational sequences have motifs similar to a Medicago gene expressed in highly polyploid cells. Based on this similarity the cotton gene was designated Ghcdh. Ghcdh is highly expressed in meristems and leaves but is present at much lower levels in fiber cells. These data are consistent with the lower levels of polyploidy reported for cotton fiber. A simple sequence repeat was identified in the gene that may be exploited as a marker to map this gene and associate it with important traits in cotton.  相似文献   

7.
8.
9.
Summary Asynchronous amoebal cultures of temperature-sensitive mutants of Physarum polycephalum were examined cytologically, and two cell cycle mutants were identified. Genetic analysis indicated that each mutant carried a single mutation that was expressed in both amoebal and plasmodial phases. Thus it is possible to isolate cell cycle mutations expressed in plasmodia by initial isolation and analysis of amoebal mutants, a quicker procedure than the alternative of isolating plasmodial mutants directly. The two mutants were studied further by measuring nuclear DNA contents and synthesis of macromolecules. Both mutants gave results consistent with a block in nuclear division.  相似文献   

10.
We have examined the pattern of dihydrofolate reductase (DHFR) enzyme and mRNA levels in cell cycle stage-specific populations obtained by centrifugal elutriation in Chinese hamster ovary cells and in a derivative line in which the dihydrofolate reductase gene is amplified approximately 50-fold. On a per cell basis, we observed a 2-fold increase in DHFR activity as cells progressed from G1 to G2/M with a concomitant 2-fold increase in the rate of protein synthesis and steady state level of mRNA. Analysis of DHFR mRNA levels in cell cycle stage-specific mouse 3T6 and human 143 tk- cells gave a similar pattern. We also demonstrate that simple alterations in growth conditions prior to elutriations can dramatically increase the levels of DHFR mRNA in all cell cycle states, thereby indicating that growth response associated with the DHFR gene functions independent of the cell cycle. We conclude that during periods of exponential growth the increases in dihydrofolate reductase activity, rate of protein synthesis, and steady state levels of mRNA parallel the general increases in cell volume and protein content associated with normal progression through the cell cycle, and therefore DHFR cannot be considered a cell cycle-regulated enzyme.  相似文献   

11.
12.
13.
SYNOPSIS Doublet Paramecium tetraurelia contain either a single macronucleus which is substantially larger than that in a singlet cell, or 2 smaller macronuclei. Doublets have approximately twice the DNA content and twice the total protein content of singlets. The cell cycle of doublets is 164% as long as that of singlets, but the relative position of the macronuclear DNA synthesis period within the cell cycle is the same as in singlets. The DNA content of doublets is regulated so that differences in the number of macronuclei do not produce corresponding changes in DNA content; bimacronucleate doublets have only 27% more DNA than unimacronucleate doublets.  相似文献   

14.
15.
Human NHIK 3025 cells, synchronized by mitotic selection, were given 2 mM thymidine, which inhibited DNA synthesis without reducing the rate of protein accumulation. After removal of the thymidine the cells proceeded towards mitosis and cell division, with an S duration 2 hours shorter than, but a G2 and M duration nearly identical to that of the control cells. If cycloheximide (1.25 m?M) was present together with thymidine, no net protein accumulation took place during the treatment, and the subsequent duration of S, G2, and M was similar to that of the untreated cells. The shortening of S seen after treatment with thymidine alone would therefore indicate that the rate of DNA synthesis depended on the amount of some preaccumulated protein. The postreplicative period in thymidine-treated cells was lengthened by cycloheximide treatment although the protein content had already been doubled. This suggests that proteins required for the traverse of this part of the cell cycle might have to be synthesized after completion of DNA replication. Shortly after removal of thymidine, the rate of protein accumulation declined markedly, indicating the existence of some mechanism for negative control of cell mass. In addition, the daughters of thymidine-treated cells had their cell cycle shortened by 2 hours. As a result, the cells had returned to balanced growth already in the first cell cycle following the induction of unbalanced growth. In conclusion, our experiments suggest that NHIK 3025 cells might require a minimum time in order to traverse the cell cycle, which is independent of cell mass.  相似文献   

16.
Summary Flow cytometry was used to study initiation of DNA replication in Escherichia coli K12 after induced expression of a plasmid-borne dnaA + gene. When the dnaA gene was induced from either the plac or the pL promoter initiation was stimulated, as evidenced by an increase in the number of origins and in DNA content per mass unit. During prolonged growth under inducing conditions the origin and DNA content per mass unit were stabilized at levels significantly higher than those found before induction or in similarly treated control cells. The largest increase was observed when using the stronger promoter pL compared to plac. Synchrony of initiation was reasonably well maintained with elevated DnaA protein concentrations, indicating that simultaneous initiation of all origins was still preferred under these conditions. A reduced rate of replication fork movement was found in the presence of rifampin when the DnaA protein was overproduced. We conclude that increased synthesis levels or increased concentrations of the DnaA protein stimulate initiation of DNA replication. The data suggest that the DnaA protein may be the limiting factor for initiation under normal physiological conditions.  相似文献   

17.
The rates of synthesis of peptidoglycan and protein during the division cycle of Escherichia coli were measured by the membrane elution technique using cells differentially labelled with N-acetylglucosamine and leucine. During the first part of the division cycle the ratio of the rates of protein and peptidoglycan synthesis was constant. The rate of peptidoglycan synthesis, relative to the rate of protein synthesis, increased during the latter part of the division cycle. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Prior to the start of constriction the cell surface increases only by lateral wall extension. After cell constriction starts, the cell surface increases by both lateral wall and pole growth. The increase in surface area is partitioned between the lateral wall and the pole so that the volume of the cell increases exponentially. No variation in cell density occurs, because the increase in surface allows a continuous exponential increase in cell volume that accommodates the exponential increase in cell mass. The results are consistent with the constant density of the growing cell and the surface stress model for the regulation of cell surface synthesis. In addition, the elution pattern suggests that the membrane elution method does work by having the cells effectively bound to the membrane by their poles.  相似文献   

18.
Summary We used cytophotometry after the Feulgen reaction and UV cytophotometry to measure the DNA content of quiescent cells of the hypothalamic preoptic region (HPR) of adult and juvenile frogs (Rana temporaria) that had been caught in their natural habitat in winter, spring and summer. The histone-to-DNA ratio in cell nuclei was cytophotometrically determined using a combined Feulgen, heparine and alcian-blue staining procedure. The vast majority of HPR cells studied had nuclei with a diploid DNA content. However, we observed great variability in the Feulgen-DNA content of the HPR cell population, which was not detected in the diploid standard (hepatocytes). This heterogeneity in the diploid sample of the HPR cell populations was always greater in prespawning frogs and may have been due to differences in the chromatin arrangement in nuclei. About 1% of cells had a DNA content either ranging between diploid and tetraploid levels (H2C cells) or at the tetraploid level (4C and 2C x 2 cells). The proportion of these cells was not affected by the age of the animals or the annual cycle, thus suggesting that there is no age-related increase in the mean DNA content in the frog HPR. The mean DNA contents of H2C and 4C cells were much higher than those in the standard (hepatocytes). This cannot be simply attributed to the presence of different amounts of nuclear proteins, but rather indicates that at least a certain proportion of the highest DNA contents may be due to a real extra-DNA synthesis.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

19.
Initiation of DNA replication from oriC in Escherichia coli takes place at a specific time in the cell division cycle, whether the origin is located on a chromosome or a minichromosome, and requires participation of the product of the dnaA gene. The effects of overproduction of DnaA protein on the cell cycle specificity of the initiation event were determined by using minichromosome replication as the assay system. DnaA protein was overproduced by inducing the expression of plasmid-encoded dnaA genes under control of either the ptac or lambda pL promoter. Induction of DnaA protein synthesis caused a burst of minichromosome replication in cells at all ages in the division cycle. The magnitude of the burst was consistent with the initiation of one round of replication per minichromosome in all cells. The replication burst was followed by a period of reduced minichromosome replication, with the reduction being greater at 30 than at 41 degrees C. The results support the idea that the DnaA protein participates in oriC replication at a stage that is limiting for initiation. Excess DnaA protein enabled all cells to achieve the state required for initiation of DNA polymerization by either effecting or overriding the normal limiting process.  相似文献   

20.
Normal and SV40 virus-transformed WI-38 human lung fibroblasts were serum starved and refed, or synchronized by double thymidine block and released from the block. At different time points in the cell cycle, steady state levels of P120 mRNA and P120 protein content of the cells were determined by densitometric scans of Northern and Western blots. At the same time points, [3H]thymidine uptake was measured and flow cytometric analysis performed for DNA content and P120 antigen staining. Levels of P120 protein and P120 mRNA were approximately 4 times greater in non-synchronous, exponentially growing transformed cells than in similarly growing normal cells. Early G1-cells, synchronized either with serum deprivation or with metabolic block, contained only a trace amount of P120 protein and mRNA. The P120 gene was transcribed early in G1 and P120 protein synthesis initiated in middle G1. A dramatic increase of P120 protein level occurred in S-phase with a corresponding mRNA peak preceding the P120 protein peak. These results indicate that P120 is overexpressed in transformed WI-38 cells and that P120 is temporally regulated during the cell cycle of both transformed and normal fibroblasts. The dramatic increase in P120 protein expression at the G1 to S boundary suggests that P120 may play a role in the regulation of cell cycle and increased nucleolar activity that is associated with cell proliferation. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号