首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the budding yeast, centromeres stay clustered near the spindle pole bodies (SPBs) through most of the cell cycle. This SPB-centromere proximity requires microtubules and functional kinetochores, which are protein complexes formed on the centromeres and capable of binding microtubules. The clustering is suggested by earlier studies to depend also on protein-protein interactions between SPB and kinetochore components. Previously it has been shown that the absence of non-essential kinetochore proteins of the Ctf19 complex weakens kinetochore-microtubule interaction, but whether this compromised interaction affects centromere/kinetochore positioning inside the nucleus is unknown. We found that in G1 and in late anaphase, SPB-centromere proximity was disturbed in mutant cells lacking Ctf19 complex members,Chl4p and/or Ctf19p, whose centromeres lay further away from their SPBs than those of the wild-type cells. We unequivocally show that the SPB-centromere proximity and distances are not dependent on physical interactions between SPB and kinetochore components, but involve microtubule-dependent forces only. Further insight on the positional difference between wild-type and mutant kinetochores was gained by generating computational models governed by (1) independently regulated, but constant kinetochore microtubule (kMT) dynamics, (2) poleward tension on kinetochore and the antagonistic polar ejection force and (3) length and force dependent kMT dynamics. Numerical data obtained from the third model concurs with experimental results and suggests that the absence of Chl4p and/or Ctf19p increases the penetration depth of a growing kMT inside the kinetochore and increases the rescue frequency of a depolymerizing kMT. Both the processes result in increased distance between SPB and centromere.  相似文献   

2.
Cse4p is an evolutionarily conserved histone H3-like protein that is thought to replace H3 in a specialized nucleosome at the yeast (Saccharomyces cerevisiae) centromere. All known yeast, worm, fly, and human centromere H3-like proteins have highly conserved C-terminal histone fold domains (HFD) but very different N termini. We have carried out a comprehensive and systematic mutagenesis of the Cse4p N terminus to analyze its function. Surprisingly, only a 33-amino-acid domain within the 130-amino-acid-long N terminus is required for Cse4p N-terminal function. The spacing of the essential N-terminal domain (END) relative to the HFD can be changed significantly without an apparent effect on Cse4p function. The END appears to be important for interactions between Cse4p and known kinetochore components, including the Ctf19p/Mcm21p/Okp1p complex. Genetic and biochemical evidence shows that Cse4p proteins interact with each other in vivo and that nonfunctional cse4 END and HFD mutant proteins can form functional mixed complexes. These results support different roles for the Cse4p N terminus and the HFD in centromere function and are consistent with the proposed Cse4p nucleosome model. The structure-function characteristics of the Cse4p N terminus are relevant to understanding how other H3-like proteins, such as the human homolog CENP-A, function in kinetochore assembly and chromosome segregation.  相似文献   

3.
Kinetochores are large multiprotein complexes that connect centromeres to spindle microtubules in all eukaryotes. Among the biochemically distinct kinetochore complexes, the conserved four-protein Mtw1 complex is a central part of the kinetochore in all organisms. Here we present the biochemical reconstitution and characterization of the budding yeast Mtw1 complex. Direct visualization by electron microscopy revealed an elongated bilobed structure with a 25-nm-long axis. The complex can be assembled from two stable heterodimers consisting of Mtw1p-Nnf1p and Dsn1p-Nsl1p, and it interacts directly with the microtubule-binding Ndc80 kinetochore complex via the centromere-proximal Spc24/Spc25 head domain. In addition, we have reconstituted a partial Ctf19 complex and show that it directly associates with the Mtw1 complex in vitro. Ndc80 and Ctf19 complexes do not compete for binding to the Mtw1 complex, suggesting that Mtw1 can bridge the microtubule-binding components of the kinetochore to the inner centromere.  相似文献   

4.
5.
A genetic synthetic dosage lethality (SDL) screen using CTF13 encoding a known kinetochore protein as the overexpressed reference gene identified two chromosome transmission fidelity (ctf) mutants, YCTF58 and YCTF26. These mutant strains carry independent alleles of a novel gene, which we have designated CTF19. In light of its potential role in kinetochore function, we have cloned and characterized the CTF19 gene in detail. CTF19 encodes a nonessential 369-amino acid protein. ctf19 mutant strains display a severe chromosome missegregation phenotype, are hypersensitive to benomyl, and accumulate at G2/M in cycling cells. CTF19 genetically interacts with kinetochore structural mutants and mitotic checkpoint mutants. In addition, ctf19 mutants show a defect in the ability of centromeres on minichromosomes to bind microtubules in an in vitro assay. In vivo cross-linking and chromatin immunoprecipitation demonstrates that Ctf19p specifically interacts with CEN DNA. Furthermore, Ctf19-HAp localizes to the nuclear face of the spindle pole body and genetically interacts with a spindle-associated protein. We propose that Ctf19p is part of a macromolecular kinetochore complex, which may function as a link between the kinetochore and the mitotic spindle.  相似文献   

6.
Meiosis is a specialized cell division process through which chromosome numbers are reduced by half for the generation of gametes. Kinetochore, a multiprotein complex that connects centromeres to microtubules, plays essential role in chromosome segregation. Ctf19 is the key central kinetochore protein that recruits all the other non‐essential proteins of the Ctf19 complex in budding yeast. Earlier studies have shown the role of Ctf19 complex in enrichment of cohesin around the centromeres both during mitosis and meiosis, leading to sister chromatid cohesion and meiosis II disjunction. Here we show that Ctf19 is also essential for the proper execution of the meiosis I specific unique events, such as non‐homologous centromere coupling, homologue pairing, chiasmata resolution and proper orientation of homologues and sister chromatids with respect to the spindle poles. Additionally, this investigation reveals that proper kinetochore function is required for faithful chromosome condensation in meiosis. Finally, this study suggests that absence of Ctf19 affects the integrity of meiotic kinetochore differently than that of the mitotic kinetochore. Consequently, absence of Ctf19 leads to gross chromosome missegregation during meiosis as compared with mitosis. Hence, this study reports for the first time the differential impact of a non‐essential kinetochore protein on the mitotic and meiotic kinetochore ensembles and hence chromosome segregation.  相似文献   

7.
We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.  相似文献   

8.
The kinetochore, which consists of DNA sequence elements and structural proteins, is essential for high-fidelity chromosome transmission during cell division. In budding yeast, Sgt1, together with Skp1, is required for assembly of the core kinetochore complex (CBF3) via Ctf13 activation. Formation of the active Ctf13-Skp1 complex also requires Hsp90, a molecular chaperone. We have found that Sgt1 interacts with Hsp90 in yeast. We also have determined that Skp1 and Hsc82 (a yeast Hsp90 protein) bind to the N-terminal region of Sgt1 that contains tetratricopeptide repeat motifs. Results of sequence and phenotypic analyses of sgt1 mutants strongly suggest that the N-terminal region containing the Hsc82-binding and Skp1-binding domains of Sgt1 is important for the kinetochore function of Sgt1. We found that Hsp90's binding to Sgt1 stimulates the binding of Sgt1 to Skp1 and that Sgt1 and Hsp90 stimulate the binding of Skp1 to Ctf13, the F-box core kinetochore protein. Our results strongly suggest that Sgt1 and Hsp90 function in assembling CBF3 by activating Skp1 and Ctf13.  相似文献   

9.
Eukaryotic chromosomes contain a specialised region known as the centromere, which forms the platform for kinetochore assembly and microtubule attachment. The centromere is distinguished by the presence of nucleosomes containing the histone H3 variant, CENP‐A. In budding yeast, centromere establishment begins with the recognition of a specific DNA sequence by the CBF3 complex. This in turn facilitates CENP‐ACse4 nucleosome deposition and kinetochore assembly. Here, we describe a 3.6 Å single‐particle cryo‐EM reconstruction of the core CBF3 complex, incorporating the sequence‐specific DNA‐binding protein Cep3 together with regulatory subunits Ctf13 and Skp1. This provides the first structural data on Ctf13, defining it as an F‐box protein of the leucine‐rich‐repeat family, and demonstrates how a novel F‐box‐mediated interaction between Ctf13 and Skp1 is responsible for initial assembly of the CBF3 complex.  相似文献   

10.
Kinetochores are composed of a large number of protein complexes that must be properly assembled on DNA to attach chromosomes to the mitotic spindle and to coordinate their segregation with the advance of the cell cycle. CBF3 is an inner kinetochore complex in the budding yeast Saccharomyces cerevisiae that nucleates the recruitment of all other kinetochore proteins to centromeric DNA. Skp1p and Sgt1p act through the core CBF3 subunit, Ctf13p, and are required for CBF3 to associate with centromeric DNA. To investigate the contribution of Skp1p and Sgt1p to CBF3 function, we have used a combination of in vitro binding assays and a unique protocol for synchronizing the assembly of kinetochores in cells. We have found that the interaction between Skp1p and Sgt1p is critical for the assembly of CBF3 complexes. CBF3 assembly is not restricted during the cell cycle and occurs in discrete steps; Skp1p and Sgt1p contribute to a final, rate-limiting step in assembly, the binding of the core CBF3 subunit Ctf13p to Ndc10p. The assembly of CBF3 is opposed by its turnover and disruption of this balance compromises kinetochore function without affecting kinetochore formation on centromeric DNA.  相似文献   

11.
The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.  相似文献   

12.
CTF7/ECO1 is an essential yeast gene required for the establishment of sister chromatid cohesion. The findings that CTF7/ECO1, POL30 (PCNA), and CHL12/CTF18 (a replication factor C [RFC] homolog) genetically interact provided the first evidence that the processes of cohesion establishment and DNA replication are intimately coupled-a link now confirmed by other studies. To date, however, it is unknown how Ctf7p/Eco1p function is coupled to DNA replication or whether Ctf7p/Eco1p physically associates with any components of the DNA replication machinery. Here, we report that Ctf7p/Eco1p associates with proteins that perform partially redundant functions in DNA replication. Chl12p/Ctf18p combines with Rfc2p to Rfc5p to form one of three independent RFC complexes. By chromatographic methods, Ctf7p/Eco1p was found to associate with Chl12/Ctf18p and with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. The association between Ctf7p/Eco1p and this RFC complex is biologically relevant in that (i) Ctf7p/Eco1p cosediments with Chl12p/Ctf18p in vivo and (ii) rfc5-1 mutant cells exhibit precocious sister separation. Previous studies revealed that Rfc1p or Rad24p associates with Rfc2p to Rfc5p to form two other RFC complexes independent of Ctf18p-RFC complexes. These Rfc1p-RFC and Rad24p-RFC complexes function in DNA replication or repair and DNA damage checkpoint pathways. Importantly, Ctf7p/Eco1p also associates with Rfc1p and Rad24p, suggesting that these RFC complexes also play critical roles in cohesion establishment. The associations between Ctf7p/Eco1p and RFC subunits provide novel evidence regarding the physical linkage between cohesion establishment and DNA replication. Furthermore, the association of Ctf7p/Eco1p with each of three RFC complexes supplies new insights into the functional redundancy of RFC complexes in cohesion establishment.  相似文献   

13.
Sister chromatid cohesion is established during S phase near the replication fork. However, how DNA replication is coordinated with chromosomal cohesion pathway is largely unknown. Here, we report studies of fission yeast Ctf18, a subunit of the RFC(Ctf18) replication factor C complex, and Chl1, a putative DNA helicase. We show that RFC(Ctf18) is essential in the absence of the Swi1-Swi3 replication fork protection complex required for the S phase stress response. Loss of Ctf18 leads to an increased sensitivity to S phase stressing agents, a decreased level of Cds1 kinase activity, and accumulation of DNA damage during S phase. Ctf18 associates with chromatin during S phase, and it is required for the proper resumption of replication after fork arrest. We also show that chl1Delta is synthetically lethal with ctf18Delta and that a dosage increase of chl1(+) rescues sensitivities of swi1Delta to S phase stressing agents, indicating that Chl1 is involved in the S phase stress response. Finally, we demonstrate that inactivation of Ctf18, Chl1, or Swi1-Swi3 leads to defective centromere cohesion, suggesting the role of these proteins in chromosome segregation. We propose that RFC(Ctf18) and the Swi1-Swi3 complex function in separate and redundant pathways essential for replication fork stabilization to facilitate sister chromatid cohesion in fission yeast.  相似文献   

14.
15.
Here, we show that the budding yeast proteins Ndc80p, Nuf2p, Spc24p and Spc25p interact at the kinetochore. Consistently, Ndc80p, Nuf2p, Spc24p and Spc25p associate with centromere DNA in chromatin immunoprecipitation experiments, and SPC24 interacts genetically with MCM21 encoding a kinetochore component. Moreover, although conditional lethal spc24-2 and spc25-7 cells form a mitotic spindle, the kinetochores remain in the mother cell body and fail to segregate the chromosomes. Despite this defect in chromosome segregation, spc24-2 and spc25-7 cells do not arrest in metaphase in response to checkpoint control. Furthermore, spc24-2 cells showed a mitotic checkpoint defect when microtubules were depolymerized with nocodazole, indicating that Spc24p has a function in checkpoint control. Since Ndc80p, Nuf2p and Spc24p are conserved proteins, it is likely that similar complexes are part of the kinetochore in other organisms.  相似文献   

16.
Sgt1p is a well-conserved protein proposed to be involved in a number of cellular processes. Genetic studies of budding yeast suggest a role for SGT1 in signal transduction, cell cycle advance, and chromosome segregation. Recent evidence has linked Sgt1p to HSP90 chaperones, although the precise relationship between these proteins is unclear. To further explore the role of Sgt1p in these processes, we have characterized the interactions among Sgt1p, the inner kinetochore complex CBF3, and HSP90 chaperones. We show that the amino terminus of Sgt1p interacts with CBF3 subunits Skp1p and Ctf13p. HSP90 interacts with Sgt1p and, in combination with the carboxy terminus of Sgt1p, regulates the interaction between Sgt1p and Skp1p in a nucleotide-dependent manner. While the Sgt1p-Skp1p interaction is required for CBF3 assembly, mutations that stabilize this interaction prevent the turnover of protein complexes important for CBF3 assembly. We propose that HSP90 and Sgt1p act together as a molecular switch, maintaining transient interactions required to balance protein complex assembly with turnover.  相似文献   

17.
Kinetochores mediate chromosome attachment to the mitotic spindle to ensure accurate chromosome segregation. Budding yeast is an excellent organism for kinetochore assembly studies because it has a simple defined centromere sequence responsible for the localization of >65 proteins. In addition, yeast is the only organism where a conditional centromere is available to allow studies of de novo kinetochore assembly. Using a conditional centromere, we found that yeast kinetochore assembly is not temporally restricted and can occur in both G1 phase and prometaphase. We performed the first investigation of kinetochore assembly in the absence of the centromeric histone H3 variant Cse4 and found that all proteins tested depend on Cse4 to localize. Consistent with this observation, Cse4-depleted cells had severe chromosome segregation defects. We therefore propose that yeast kinetochore assembly requires both centromeric DNA specificity and centromeric chromatin.  相似文献   

18.
Stoyan T  Carbon J 《Eukaryotic cell》2004,3(5):1154-1163
The human pathogenic yeast Candida glabrata is the second most common Candida pathogen after Candida albicans, causing both bloodstream and mucosal infections. The centromere (CEN) DNA of C. glabrata (CgCEN), although structurally very similar to that of Saccharomyces cerevisiae, is not functional in S. cerevisiae. To further examine the structure of the C. glabrata inner kinetochore, we isolated several C. glabrata homologs of S. cerevisiae inner kinetochore protein genes, namely, genes for components of the CBF3 complex (Ndc10p, Cep3p, and Ctf13p) and genes for the proteins Mif2p and Cse4p. The amino acid sequence identities of these proteins were 32 to 49% relative to S. cerevisiae. CgNDC10, CgCEP3, and CgCTF13 are required for growth in C. glabrata and are specifically found at CgCEN, as demonstrated by chromatin immunoprecipitation experiments. Cross-complementation experiments revealed that the isolated genes, with the exception of CgCSE4, are species specific and cannot functionally substitute for the corresponding genes in S. cerevisiae deletion strains. Likewise, the S. cerevisiae CBF3 genes NDC10, CEP3, and CTF13 cannot functionally replace their homologs in C. glabrata CBF3 deletion strains. Two-hybrid analysis revealed several interactions between these proteins, all of which were previously reported for the inner kinetochore proteins of S. cerevisiae. Our findings indicate that although many of the inner kinetochore components have evolved considerably between the two closely related species, the organization of the C. glabrata inner kinetochore is similar to that in S. cerevisiae.  相似文献   

19.
Skibbens RV 《Genetics》2004,166(1):33-42
From the time of DNA replication until anaphase onset, sister chromatids remain tightly paired along their length. Ctf7p/Eco1p is essential to establish sister-chromatid pairing during S-phase and associates with DNA replication components. DNA helicases precede the DNA replication fork and thus will first encounter chromatin sites destined for cohesion. In this study, I provide the first evidence that a DNA helicase is required for proper sister-chromatid cohesion. Characterizations of chl1 mutant cells reveal that CHL1 interacts genetically with both CTF7/ECO1 and CTF18/CHL12, two genes that function in sister-chromatid cohesion. Consistent with genetic interactions, Chl1p physically associates with Ctf7p/Eco1p both in vivo and in vitro. Finally, a functional assay reveals that Chl1p is critical for sister-chromatid cohesion. Within the budding yeast genome, Chl1p exhibits the highest degree of sequence similarity to human CHL1 isoforms and BACH1. Previous studies revealed that human CHLR1 exhibits DNA helicase-like activities and that BACH1 is a helicase-like protein that associates with the tumor suppressor BRCA1 to maintain genome integrity. Our findings document a novel role for Chl1p in sister-chromatid cohesion and provide new insights into the possible mechanisms through which DNA helicases may contribute to cancer progression when mutated.  相似文献   

20.
Cse4 is the budding yeast homologue of CENP-A, a modified histone H3 that specifies the base of kinetochores in all eukaryotes. Budding yeast is unique in having only one kinetochore microtubule attachment site per centromere. The centromere is specified by CEN DNA, a sequence-specific binding complex (CBF3), and a Cse4-containing nucleosome. Here we compare the ratio of kinetochore proximal Cse4-GFP fluorescence at anaphase to several standards including purified EGFP molecules in vitro to generate a calibration curve for the copy number of GFP-fusion proteins. Our results yield a mean of ~5 Cse4s, ~3 inner kinetochore CBF3 complexes, and ~20 outer kinetochore Ndc80 complexes. Our calibrated measurements increase 2.5-3-fold protein copy numbers at eukaryotic kinetochores based on previous ratio measurements assuming two Cse4s per budding yeast kinetochore. All approximately five Cse4s may be associated with the CEN nucleosome, but we show that a mean of three Cse4s could be located within flanking nucleosomes at random sites that differ between chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号