首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress-like levels of cortisol suppress follicular growth and development and block or delay the preovulatory surge of LH when cortisol is continuously administered during the late luteal and early follicular phases of the ovine oestrous cycle. We postulated that cortisol infusion of shorter duration would have a similar effect. To test this hypothesis the oestrous cycles of mature ewes were synchronized using progestin-treated vaginal pessaries. Ewes were randomly assigned to one of four treatment groups. Animals received cortisol (0.1mg/kg/h; n=8) or vehicle alone (n=8) beginning 5 days before, and continuing for 5 days after, pessary removal (PR). Additional groups received cortisol only during the 5 days period before (n=7), or the 5 days period after (n=8), PR. Continuous delivery of cortisol established stable serum concentrations of cortisol of 72.0+/-2.5ng/ml within 6h of initiation of infusion. Serum concentrations of oestradiol increased progressively during the period after PR in control animals receiving vehicle alone and the preovulatory surge of LH was evident in all control animals (eight of eight) 55.5+/-5.0h after PR. In contrast, follicular development and the preovulatory surge of LH were evident during the period of cortisol infusion in only one of eight animals receiving stress-like levels of cortisol over the entire 10-day infusion period. Similarly, neither follicular development nor surge-like secretion of LH were evident during the infusion period in animals (zero of eight) receiving cortisol during the 5-day period after PR. This cortisol-dependent suppression of ovarian activity in sheep receiving stress-like levels of cortisol during the 5 days after PR was temporary and follicular development, the ovulatory surge of LH, and subsequent luteal function were evident in six of eight ewes after cessation of cortisol delivery. Similarly, follicular development and the preovulatory surge of LH were noted within 5 days after PR in four of seven ewes receiving cortisol only during the 5-day period prior to PR. Collectively, these data indicate that stress-like levels of cortisol reduce fertility of sheep by suppressing follicular development and the preovulatory surge of LH. Additionally, cortisol delivery during the follicular phase has a more profound suppressive effect on follicular development than cortisol administration during the luteal phase.  相似文献   

2.
The effect of stress-like concentrations of cortisol on oestradiol-induced change in LH secretion and GnRH receptor expression was evaluated in orchidectomized sheep (wethers). Twenty-four wethers were assigned at random to one of the four treatment groups in a 2x2 factorial design (n=6 wethers/group). Wethers received cortisol (90 microg/kg/h; groups 2 and 4) or a comparable volume of cortisol delivery vehicle (groups 1 and 3) by continuous infusion for 48 h. During the final 24 h of infusion, wethers received oestradiol (6 ng/kg/h; groups 3 and 4) or oestradiol delivery vehicle (groups 1 and 2). The pattern of LH secretion was assessed during a 3-h period of intensive blood collection beginning 21 h after initiation of oestradiol infusion. Although neither cortisol nor oestradiol alone affected (P>0.05) mean serum concentration of LH or LH pulse frequency, serum LH and the frequency of secretory episodes of LH were significantly reduced (P<0.05) in wethers receiving cortisol and oestradiol in combination. Anterior pituitary tissue was collected at the end of the infusion period. Oestradiol increased (P<0.05) tissue concentrations of GnRH receptor and GnRH receptor mRNA. Although cortisol alone did not affect (P>0.05) basal concentrations of receptor or receptor mRNA, the magnitude of oestradiol-induced increase in GnRH receptor and GnRH receptor mRNA was significantly reduced in wethers receiving cortisol and oestradiol concurrently. Conversely, steady-state concentrations of mRNA encoding the LHbeta and FSHbeta subunits were increased (P<0.05) in wethers receiving cortisol. These observations demonstrate that stress-like concentrations of cortisol act in concert with oestradiol to suppress LH secretion. In addition, cortisol blocks oestradiol-dependent increase in pituitary tissue concentrations of GnRH receptor and GnRH receptor mRNA.  相似文献   

3.
Fifteen ovariectomized ewes were treated with implants (s.c.) creating circulating luteal progesterone concentrations of 1.6 +/- 0.1 ng ml-1 serum. Ten days later, progesterone implants were removed from five ewes which were then infused with saline for 64 h (0.154 mol NaCl l-1, 20 ml h-1, i.v.). Ewes with progesterone implants remaining were infused with saline (n = 5) or naloxone (0.5 mg kg-1 h-1, n = 5) in saline for 64 h. At 36 h of infusion, all ewes were injected with oestradiol (20 micrograms in 1 ml groundnut oil, i.m.). During the first 36 h of infusion, serum luteinizing hormone (LH) concentrations were similar in ewes infused with saline after progesterone withdrawal and ewes infused with naloxone, but with progesterone implants remaining (1.23 +/- 0.11 and 1.28 +/- 0.23 ng ml-1 serum, respectively, mean +/- SEM, P greater than 0.05). These values exceeded circulating LH concentrations during the first 36 h of saline infusion of ewes with progesterone implants remaining (0.59 +/- 0.09 ng ml-1 serum, P less than 0.05). The data suggested that progesterone suppression of tonic LH secretion, before oestradiol injection, was completely antagonized by naloxone. After oestradiol injection, circulating LH concentrations decreased for about 10 h in ewes of all groups. A surge in circulating LH concentrations peaked 24 h after oestradiol injection in ewes infused with saline after progesterone withdrawal (8.16 +/- 3.18 ng LH ml-1 serum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The pattern of GnRH-like stimuli capable of inducing follicular growth, ovulation, and luteal function was evaluated in ewes passively immunized against GnRH. The estrous cycles of 30 regularly cyclic sheep were synchronized using vaginal pessaries impregnated with a synthetic progestogen. Animals were passively immunized against GnRH (groups 2-5, n = 6) or the carrier protein, keyhole limpet hemocyanin (KLH; group 1, n = 6), at the time of pessary removal (PR). Circhoral delivery of saline (groups 1, 2, and 5) or low amplitude GnRH agonist (des-Gly10 GnRH ethylamide [100 ng/hourly pulse]; groups 3 and 4) was initiated at PR and continued for 3 (groups 4 and 5) or 12 days (groups 1-3). In groups 4 and 5, the amplitude of the GnRH-like stimulus was increased to 800 ng/hourly pulse (stimulus-shift) during the 24-h period beginning 72 h after PR. The amplitude of the hourly stimulus was adjusted to 100 ng/pulse 96 h after PR and continued at that level to Day 12. The endocrine changes associated with follicle growth and maturation (serum concentrations of estradiol [E2] above 10 pg/ml), ovulation (surge-like secretion of LH and FSH), and normal luteal function (serum concentrations of progesterone [P] above 2 ng/ml) were evident in ewes passively immunized against KLH (group 1). In this group, the preovulatory surge of gonadotropins was noted 48.7 +/- 1.2 h after PR. These endocrine events were blocked by passive immunization against GnRH (group 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This study was conducted to test the hypothesis that the rate (dose/time) at which oestradiol-17 beta (oestradiol) is presented to the hypothalamo-pituitary axis influences secretion of LH, FSH and prolactin. A computer-controlled infusion system was used to produce linearly increasing serum concentrations of oestradiol in ovariectomized ewes over a period of 60 h. Serum samples were collected from ewes every 2 h from 8 h before to 92 h after start of infusion, and assayed for oestradiol, LH, FSH and prolactin. Rates of oestradiol increase were categorized into high (0.61-1.78 pg/h), medium (0.13-0.60 pg/h) and low (0.01-0.12 pg/h). Ewes receiving high rates of oestradiol (N = 11) responded with a surge of LH 12.7 +/- 2.0 h after oestradiol began to increase, whereas ewes receiving medium (N = 15) and low (N = 11) rates of oestradiol responded with a surge of LH at 19.4 +/- 1.7 and 30.9 +/- 2.0 h, respectively. None of the surges of LH was accompanied by a surge of FSH. Serum concentrations of FSH decreased and prolactin increased in ewes receiving high and medium rates of oestradiol, when compared to saline-infused ewes (N = 8; P less than 0.05). We conclude that rate of increase in serum concentrations of oestradiol controls the time of the surge of LH and secretion of prolactin and FSH in ovariectomized ewes. We also suggest that the mechanism by which oestradiol induces a surge of LH may be different from the mechanism by which oestradiol induces a surge of FSH.  相似文献   

6.
Two experiments were conducted during the anoestrous period in Border Leicester x Merino ewes with ovarian autotransplants to study the effects of a single injection of 20 mg progesterone on follicular steroid secretion. The aim of these experiments was to determine whether pretreatment with a 20 mg intramuscular injection of progesterone could reduce GnRH-induced ovarian steroid secretion in anoestrous ewes. In both experiments, an injection of 150 ng GnRH induced an LH pulse in all ewes with a maximum concentration 10 min (the first post-injection sample) after injection. Oestradiol and androstenedione secretion increased progressively after the GnRH-induced LH pulse and reached maximum rates of secretion between 60 and 90 min before decreasing slowly to pre-injection rates at 150 min. There were no differences in the pattern of secretion of oestradiol (measured in both experiments) or androstenedione (measured only in Expt 2). In Expt 1, the injection of progesterone 72 h before the challenge with GnRH had no effect on the maximum rate of oestradiol secretion from the autotransplanted ovary. However, in Expt 2, when progesterone was given either 36 or 60 h before GnRH, there was a significant suppression in the maximum rate of secretion of both oestradiol and androstenedione between 60 and 90 min after GnRH injection. These data show that pretreatment of anoestrous sheep with progesterone can suppress LH-stimulated steroid secretion from the ovary and indicate that progesterone may have a direct effect on oestrogenic follicles in sheep.  相似文献   

7.
Stress-like levels of cortisol inhibit sexual receptivity in ewes but the mechanism of this action is not understood. One possibility is that cortisol interferes with the actions of oestradiol to induce sexual receptivity. We tested this hypothesis in 2 experiments with ovariectomised ewes that were artificially induced into oestrus by 12 days of i.m. injections of progesterone followed by an i.m. injection of oestradiol benzoate (ODB) 48 h later. In Experiment 1, ewes were randomly allocated to the following groups: saline infusion + 25 μg ODB, saline infusion + 50 μg ODB, cortisol infusion + 25 μg ODB or cortisol infusion + 50 μg ODB (n = 5 per group). Saline or cortisol was infused i.v. for 40 h beginning at the ODB injection. In Experiment 2, ewes were infused with saline or cortisol (n = 5 per group) for 5 h beginning 1 h before ODB injection. In both experiments, ewe sexual behaviour (attractivity, proceptivity and receptivity) was quantified every 6 h. Blood samples were also collected. The cortisol infusion yielded plasma concentrations of cortisol similar to those seen during psychosocial stress. In both experiments, cortisol suppressed receptivity index (number of immobilisations by ewe/courtship displays by ram) and the number of times ewes were mounted but had no effect on attractivity or proceptivity, irrespective of the dose of ODB (Experiment 1). Cortisol also suppressed LH pulse amplitude. These results suggest that both an acute (5 h) and chronic (40 h) infusion of cortisol inhibit oestradiol-induced sexual receptivity in ewes and that increasing the dose of ODB does not overcome the inhibitory effects of cortisol.  相似文献   

8.
The initial aim of the present study was to test whether the stress of transport suppresses LH pulsatile secretion in ewes. In a pilot experiment in the late breeding season, transport resulted in an unexpected response in three out of five transported, ovariectomized ewes pretreated with oestradiol and progesterone. Before transport, seasonal suppression of LH pulses had occurred earlier than anticipated, but LH pulsatility suddenly restarted for the period of transport. This finding was reminiscent of unexplained results obtained in ovariectomized ewes infused centrally with high doses of corticotrophin-releasing hormone after pretreatment with low doses of oestradiol with or without progesterone. Hence, an additional aim of the present study was to examine whether these latter results with corticotrophin-releasing hormone could be reproduced by increasing endogenous corticotrophin-releasing hormone secretion by transport. Subsequent experiments used groups of at least eight ovariectomized ewes at different times of the year with or without prior exposure to steroids to assess whether these unexpected observations were associated with season or the prevailing endocrine milieu. In the mid-breeding season, transport for 4 h in the absence of steroid pretreatment for 8 months reduced LH pulse frequency from 7.5 +/- 0.3 to 6.3 +/- 0.4 pulses per 4 h (P < 0.05) and LH pulse amplitude from 2.6 +/- 0.5 to 1.8 +/- 0.3 ng ml-1 (P < 0.05). Similarly, in the mid-breeding season, 34 h after the cessation of pretreatment with oestradiol and progesterone, transport suppressed LH pulse frequency from 6.1 +/- 0.4 to 5.5 +/- 0.3 pulses per 4 h (P < 0.05) with a tendency of effect on amplitude (6.2 +/- 2.7 to 2.61 +/- 0.6 ng ml-1; P = 0.07; note the large variance in the pretransport data). During mid-anoestrus, evidence of a suppressive effect of transport was only observed on LH pulse amplitude (4.7 +/- 0.6 versus 3.0 +/- 0.5 pulses per 4 h; P < 0.05) in ovariectomized ewes that had not been exposed to ovarian steroids for 4 months. Repetition of the pilot experiment with 12 ewes during the transition into anoestrus resulted in one ewe with LH pulses seasonally suppressed but increased by transport; 11 ewes had a distinct pulsatile LH pattern which was decreased by transport in six ewes. In anoestrus, there was no effect of transport on LH pulse frequency or amplitude in intact ewes, or those ovariectomized 2-3 weeks previously, with or without prior oestradiol and progesterone treatment. However, basal concentrations of cortisol were greater in anoestrus than in the breeding season, and the increment in cortisol during transport was similar in anoestrus and the breeding season but greater during the transition into anoestrus (P < 0.05). Progesterone concentrations increased from 0.31 +/- 0.02 ng ml-1 before transport to 0.48 +/- 0.05 ng ml-1 during the second hour of transport (P < 0.05). In conclusion, transport reduced LH pulse frequency and amplitude in ovariectomized ewes that had not been exposed to exogenous steroids for at least 4 months. In most animals, the previously observed increase in LH pulsatility induced by exogenous CRH was not reproduced by increasing endogenous CRH secretion by transport. However, in four ewes, transport did increase LH pulsatility, but only during the transition into anoestrus in ewes with seasonally suppressed LH profiles after withdrawal of steroid pretreatment.  相似文献   

9.
This study was designed to see if giving exogenous oestradiol, during the follicular phase of the oestrous cycle of intact ewes, during the breeding season or transition into anoestrus, would alter the occurrence, timing or magnitude of the preovulatory surge of secretion of luteinising hormone (LH) or follicle stimulating hormone (FSH). During the breeding season and the time of transition, separate groups of ewes were infused (intravenously) with either saline (30 ml h−1; n = 6) or oestradiol in saline (n = 6) for 30 h. Infusion started 12 h after removal of progestin-containing intravaginal sponges that had been in place for 12 days. The initial dose of oestradiol was 0.02 μg h−1; this was doubled every 4 h for 20 h, followed by every 5 h up to 30 h, to reach a maximum of 1.5 μg h−1. Following progestin removal during the breeding season, peak serum concentrations of oestradiol in control ewes were 10.31 ± 1.04 pg ml−1, at 49.60 ± 3.40 h after progestin removal. There was no obvious peak during transition, but at a time after progestin removal equivalent to the time of the oestradiol peak in ewes at mid breeding season, oestradiol concentrations were 6.70 ± 1.14 pg ml−1 in ewes in transition (P < 0.05). In oestradiol treated ewes, peak serum oestradiol concentrations (24.8 ± 2.1 pg ml−1) and time to peak (41.00 ± 0.05 h) did not differ between seasons (P > 0.05). During the breeding season, all six control ewes and four of six ewes given oestradiol showed oestrus with LH and FSH surges. The two ewes not showing oestrus did not respond to oestrus synchronisation and had persistently high serum concentrations of progesterone. During transition, three of six control ewes showed oestrus but only two had LH and FSH surges; all oestradiol treated ewes showed oestrus and gonadotrophin surges (P < 0.05). The timing and magnitude of LH and FSH surges did not vary with treatment or season. In blood samples collected every 12 min for 6 h, from 12 h after the start of oestradiol infusion, mean serum concentrations of LH and LH pulse frequency were lower in control ewes during transition than during mid breeding season (P < 0.05). Oestradiol treatment resulted in lower mean serum concentrations of LH in season and lower LH pulse frequency in transition (P < 0.05). We concluded that enhancing the height of the preovulatory peak in serum concentrations of oestradiol during the breeding season did not alter the timing or the magnitude of the preovulatory surge of LH and FSH secretion and that at transition into anoestrus, oestradiol can induce oestrus and the surge release of LH and FSH as effectively as during the breeding season.  相似文献   

10.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

11.
Gonadotrope function during continuous infusion of estradiol (E2) was evaluated in orchidectomized sheep (wethers). Serum concentrations of LH were reduced (p less than 0.05) within 3 h of introduction of E2 and remained depressed for the period of E2 delivery (48 h). Gonadotrope responsiveness (change in LH secretion induced by a 500-ng GnRH challenge, i.v.) was assessed 0, 3, 6, 12, 24, or 48 h after initiation of E2 infusion. Gonadotrope responsiveness was augmented (p less than 0.05) 12, 24, and 48 h after first introduction of E2. In a companion study, anterior pituitary tissue was collected 0, 3, 6, 12, 24, or 48 h after the beginning of E2 infusion. Tissue concentration of GnRH receptor was increased 3-fold within 12 h of first introduction of E2. Tissue stores of LH were also increased (p less than 0.05) during E2 infusion. Passive immunization against GnRH increased (p less than 0.05) tissue stores of LH, but had no effect on GnRH receptor concentration. Passive immunization against GnRH and concurrent infusion of E2 increased (p less than 0.05) both tissue stores of LH and tissue concentrations of GnRH receptor. The acute suppression of LH secretion induced by infusion of E2 was not affected by concurrent episodic administration of GnRH (200 ng/hourly pulse). However, serum concentrations of LH were restored to pretreatment levels within 12 h of initiation of E2 infusion and episodic delivery of GnRH. These data indicate that E2 acts in wethers to suppress gonadotropin secretion while simultaneously increasing GnRH receptor concentration, tissue stores of LH, and gonadotrope responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ewes were sampled during the mid-late luteal phase of the oestrous cycle. Hypophysial portal and jugular venous blood samples were collected at 5-10 min intervals for a minimum of 3 h, before i.v. infusions of saline (12 ml/h; N = 6) or naloxone (40 mg/h; N = 6) for 2 h. During the 2-h saline infusion 2/6 sheep exhibited a GnRH/LH pulse; 3/6 saline infused ewes did not show a pulse during the 6-8-h portal blood sampling period. In contrast, large amplitude GnRH/LH pulses were observed during naloxone treatment in 5/6 ewes. The mean (+/- s.e.m.) amplitude of the LH secretory episodes during the naloxone infusion (1.07 +/- 0.11 ng/ml) was significantly (P less than 0.05) greater than that before the infusion in the same sheep (0.54 +/- 0.15 ng/ml). Naloxone significantly (P less than 0.005) increased the mean GnRH pulse amplitude in the 5/6 responding ewes from a pre-infusion value of 0.99 +/- 0.22 pg/min to 4.39 +/- 1.10 pg/min during infusion. This episodic GnRH secretory rate during naloxone treatment was also significantly (P less than 0.05) greater than in the saline-infused sheep (1.53 +/- 0.28 pg/min). Plasma FSH and prolactin concentrations did not change in response to the opiate antagonist. Perturbation of the endogenous opioid peptide system in the ewe by naloxone therefore increases the secretion of hypothalamic GnRH into the hypophysial portal vasculature. The response is characterized by a large-amplitude GnRH pulse which, in turn, causes a large-amplitude pulse of LH to be released by the pituitary gland.  相似文献   

13.
The pattern of change in plasma progesterone and LH concentrations was monitored in Clun Forest ewes at a natural oestrus and compared to that observed after removal of progesterone implants. The rate of decline in plasma progesterone concentrations after implant withdrawal (1.8 +/- 0.2 ng/ml h-1) was significantly greater (P less than 0.001) than that observed at natural luteolysis (0.2 +/- 0.1 ng/ml h-1), and this resulted in an abnormal pattern of change in tonic LH secretion up to the time of the preovulatory LH surge. This more rapid rate of progesterone removal was also associated with a shortening of the intervals from the time that progesterone concentrations attained basal values to the onset of oestrus (P less than 0.05) and the onset of the preovulatory LH surge (P less than 0.01). However, there were no significant differences in the duration of the LH peak, preovulatory peak LH concentration, ovulation rate or the pattern of progesterone concentrations in the subsequent cycle. It is suggested that the abnormal patterns of change in progesterone and tonic LH concentrations may be one factor involved in the impairment of sperm transport and abnormal patterns of oestradiol secretion known to occur at a synchronized oestrus.  相似文献   

14.
The patterns of LH and FSH secretion were measured in 4 experimental groups of Finnish Landrace and Scottish Blackface ewes: long-term (18 months) ovariectomized ewes (Group 1), long-term ovariectomized ewes with an oestradiol implant, which has been shown to produce peripheral levels of approximately 5 pg/ml (Group 2), long-term ovariectomized ewes with an oestradiol implant for 18 months which was subsequently removed (surgery on Day 0) (Group 3) and short-term ovariectomized ewes (surgery on Day 0) (Group 4). LH and FSH concentrations were monitored in all groups at approximately weekly intervals, before and after Day 0. Finnish Landrace ewes in Groups 1, 2 and 3 had significantly higher mean FSH concentrations than did Scottish Blackface ewes (P less than 0.01). FSH and LH concentrations increased significantly in Groups 3 and 4, but values in Group 4 were significantly lower (P less than 0.01) than those in Group 1 ewes even up to 30 days after ovariectomy. In Group 3, LH concentrations increased to levels similar to those in Group 1. The pattern of LH release was, however, significantly different, with a lower LH pulse frequency (P less than 0.05), but higher pulse amplitude (P less than 0.05). This difference was maintained at least until 28 days after implant removal. We suggest that removal of negative feedback by ovariectomy demonstrates an underlying breed difference in the pattern of FSH secretion and that ovarian factors other than oestradiol are also involved in the negative-feedback control of hypothalamic/pituitary gland function. Furthermore, negative-feedback effects can be maintained for long periods, at least 28 days, after ovariectomy or oestradiol implant removal.  相似文献   

15.
Prior investigations have shown that localized infusion by microdialysis of gamma-aminobutyric acid(B) (GABA(B)) agonists into the medial basal hypothalamus of male sheep rapidly increases GnRH and LH pulse amplitude. The objectives of these studies were to determine if infusion of GABA(B) agonists SKF 97541 or baclofen into the medial basal hypothalamus of female sheep would affect basal LH secretion and if infusion of a potent antagonist would alter expression of LH surges induced by injection of estrogen. Infusion of either SKF 97541 (10 or 40 microM) or baclofen (1 mM) into estrogen-treated ovariectomized ewes did not alter basal LH secretory patterns, whereas both drugs significantly elevated mean LH and LH pulse amplitude in ovariectomized ewes during the nonbreeding season. Infusion of the antagonist CGP 52432 (250 or 500 microM) did not affect expression of estrogen-induced LH surges in ovariectomized ewes. These observations support the concept that GABA(B) receptors in the medial basal hypothalamus regulate basal LH secretion but do not regulate the surge mode of LH secretion in the female sheep.  相似文献   

16.
The aim of this study was to elucidate the mechanism(s) involved in stress-induced subfertility by examining the effect of 4 h transport on surge and pulsatile LH secretion in intact ewes and ovariectomized ewes treated with steroids to induce an artificial follicular phase (model ewes). Transport caused a greater delay in the onset of the LH surge in nine intact ewes than it did in ten ovariectomized ewes (intact: 41.0 +/- 0.9 h versus 48.3 +/- 0.8 h, P < 0.02; ovariectomized model: 40.8 +/- 0.6 h versus 42.6 +/- 0.5 h, P < 0.02). Disruption of the hypothalamus-pituitary endocrine balance in intact ewes may have reduced gonadotrophin stimulation of follicular oestradiol production which had an additional effect on the LH surge mechanism. In the ovariectomized model ewes, this effect was masked by the exogenous supply of oestradiol. However, in these model ewes, there was a greater suppression of maximum LH surge concentrations (intact controls: 29 +/- 4 ng ml-1 versus intact transported 22 +/- 5 ng ml-1, P < 0.02; ovariectomized model controls: 35 +/- 7 ng ml-1 versus model transported 15 +/- 2 ng ml-1, P < 0.02). Subsequent exposure to progesterone for 12 days resulted in the resumption of a normal LH profile in the next follicular phase, indicating that acute stress leads to a temporary endocrine lesion. In four intact ewes transported in the mid-follicular phase, there was a suppression of LH pulse amplitude (0.9 +/- 0.3 versus 0.3 +/- 0.02 ng ml-1, P < 0.05) but a statistically significant effect on pulse frequency was not observed (2.0 +/- 0.4 versus 1.7 +/- 0.6 pulses per 2 h). In conclusion, activation of the hypothalamus-pituitary-adrenal axis by transport in the follicular phase of intact ewes interrupts surge secretion of LH, possibly by interference with LH pulsatility and, hence, follicular oestradiol production. This disruption of gonadotrophin secretion will have a major impact on fertility.  相似文献   

17.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

18.
Two experiments were performed to examine the effect of estradiol on secretion of luteinizing hormone (LH) and on the number of receptors for gonadotropin-releasing hormone (GnRH) after down regulation of GnRH receptors in ovariectomized ewes. In the first experiment, ovariectomized ewes were administered one of four treatments: Group 1) infusion of GnRH i.v. for 40 h; Group 2) injection of 100 micrograms estradiol i.m.; Group 3) infusion of GnRH i.v. for 16 h followed immediately by an injection of 100 micrograms estradiol i.m.; and Group 4) infusion of GnRH i.v. for 40 h plus injection of 100 micrograms estradiol i.m. after the 16th h of infusion. Ewes in Groups 1, 3 and 4 responded to the infusion of GnRH with an immediate increase in serum concentrations of LH, with maximum values occurring between 2 and 4 h after the start of infusion; serum concentrations of LH then began to decline and were approaching the pretreatment baseline within 16 h. Administration of estradiol resulted in a surge of LH regardless of whether the pituitary had been desensitized by infusion of GnRH or not. In all cases the magnitude of the surge was similar to that induced by the initial infusion of GnRH. In Groups 2 and 3 the surge of LH began at 12.3 +/- 0.1 and 11.9 +/- 0.1 h after administration of estradiol. In contrast, the ewes in Group 4 had a surge of LH beginning 3.7 +/- 0.1 h after administration of estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Administration of a GnRH agonist (5 micrograms) every 12 h to long-term ovariectomized ewes for 5 or 10 days during the breeding season suppressed mean LH levels from around 6 to 1 ng/ml on Days 1 and 4 after treatment; on Day 1 after treatment LH pulse frequency and amplitude were lower than pretreatment values. On Day 4 after treatment LH pulse frequency was restored to pretreatment levels (1 per h) whereas LH pulse amplitude had only slightly increased from 0.5 to 1 ng/ml, a value 25% of that before treatment. This increase in amplitude was greater the shorter the duration of treatment. Ovariectomized ewes treated with the agonist for 5 days exhibited both negative and positive feedback actions after implantation of a capsule containing oestradiol; however, compared to control ewes treated with oestradiol only, the positive and negative feedback actions of oestradiol were blunted. These results suggest that the recovery of tonic LH concentrations after GnRH agonist-induced suppression is limited primarily by changes in LH pulse amplitude. The results also demonstrate that the feedback actions of oestradiol are attenuated, but not blocked, by GnRH agonist treatment.  相似文献   

20.
Stressors, such as poor body condition, adverse temperatures or even common management procedures (e.g., transport or shearing) suppress normal oestrus behaviour and reduce ewe fertility. All these events are co-ordinated by endocrine interactions, which are disrupted in stressful situations. This disruption is usually temporary in adult ewes, so that, when prevailing conditions improve, normal fertility would resume. Imposition of an experimental stressor (shearing, transport, isolation from other sheep, injection of endotoxin or insulin or cortisol infusion) suppresses GnRH/LH pulse frequency and amplitude. Part of the cause is at the pituitary, but effects on GnRH/LH pulse frequency and the GnRH/LH surge are mediated via the hypothalamus. It is not yet clear whether delays in the surge are caused by interruption of the oestradiol signal-reading phase, the signal transmission phase or GnRH surge release. Stressors also delay the onset of behaviour, sometimes distancing this from the onset of the pre-ovulatory LH surge. This could have deleterious consequences for fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号