首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied egg‐pecking behaviour in males and females of three cowbird species: the shiny cowbird (Molothrus bonariensis), a host generalist brood parasite, the screaming cowbird (M. rufoaxillaris), a host specialist brood parasite, and the bay‐winged cowbird (Agelaioides badius), a non‐parasitic species. We conducted three experiments in which we offered each bird an artificial nest with two plaster eggs and recorded whether egg pecking occurred and the number of pecks on each egg. In expt 1, we tested if there were species and sex differences in egg‐pecking behaviour by offering the birds two spotted eggs of similar pattern. Shiny and screaming cowbirds responded in 40.3% and 44% of the trials, respectively, with females and males presenting similar levels of response. In contrast, bay‐winged cowbirds did not show any response. In expt 2, we tested if shiny cowbirds responded differentially when they faced a choice between one host and one shiny cowbird egg, while in expt 3, we tested if screaming cowbirds responded differentially when they faced a choice between one shiny and one screaming cowbird egg. Shiny cowbirds pecked preferentially host eggs while screaming cowbirds pecked more frequently shiny cowbird eggs. Our results show that egg‐pecking behaviour is present in both sexes of parasitic cowbirds, but not in non‐parasitic birds, and that parasitic cowbirds can discriminate between eggs of their own species and the eggs of their hosts or other brood parasites.  相似文献   

2.
Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity.  相似文献   

3.
Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.  相似文献   

4.
The nesting-cue hypothesis poses that avian brood parasites use nest-defence responses directed toward them by hosts as cues to locate nests to parasitize. Hosts that respond more intensely to brood parasites should provide more cues about nest location than those hosts giving lower intensity responses. Thus, the nesting-cue hypothesis predicts that within a species parasitized nest owners should respond more intensely than unparasitized nest owners to cowbirds perched near and away from nests. This assumes that hosts respond to cowbirds when they are encountered away from the nest and that host responses gradually increase in intensity as the cowbird nears the nest. The nesting-cue hypothesis, its assumptions and prediction were tested using six host species of the brown-headed cowbird (Molothrus ater, Icterinae). We presented a female cowbird model at three distances from host nests and compared the responses elicited. All species responded to the cowbird at all distances, which supports the first assumption. Some of the rarely elicited responses (e.g. contacts) and the proximity of the host to the model varied significantly with distance, which suggests that cowbirds could use nest defence by the host as cues to the location of an active nest. However, parasitized nest owners did not respond more intensely than unparasitized nest owners to the cowbird positioned at any of the distances from the nest, which does not support the nesting-cue hypothesis itself. Further considerations are discussed that suggest that nest defence is not likely to be used as a nest-location cue.  相似文献   

5.
ABSTRACT Brood parasites often must overcome host defenses that may include behaviors that serve other functions, such as deterrence of predators and nest attendance during laying and incubation. Host use by brood parasites may also be influenced by competitors in areas where more than one parasitic species occurs. We identified the degree to which behavior of potential hosts and potential competitors affected laying by Brown‐headed Cowbirds (Molothrus ater) and Bronzed Cowbirds (M. aeneus) at a site in south Texas where they co‐occur. We watched potential host nests during the presunrise period to record cowbird laying and document nest visitation, laying, cowbird‐host encounters, and nest attentiveness by hosts. Hosts were frequently at their nests when cowbirds laid eggs (83% of 121 watches among nests of five host species) and cowbirds regularly encountered hosts (43–74% and 40–77% of watches per species of host for Brown‐headed and Bronzed cowbirds, respectively). Host nest defense infrequently interfered with cowbird laying and cowbirds rarely interacted with one another during laying. Overall, 12% of the 42 cowbird laying attempts that elicited host nest defense failed, resulting in cowbird eggs either laid atop hosts as they sat in nests or laid outside the nest cup. We clearly documented that relatively small hosts can thwart parasitism by cowbirds. Thus, the potential for successful defense of nests should be considered when assessing the evolution of behaviors to deter the removal of host eggs by cowbirds and mechanisms leading to nest abandonment. Regarding the latter, the presence of a cowbird at a nest would be a poor indicator for parasitism as some laying attempts were thwarted and unparasitized broods were reared at those nests. Despite the potential for nest defense to affect host use by cowbirds, we did not detect an effect of nest defense. Because most host defense was ineffective, we examined hypotheses for the timing of cowbird laying and host nest attendance. Our analysis of time of day of laying by Brown‐headed Cowbirds at our site and data compiled from the literature suggests that laying time is best predicted by the time of civil twilight (first light) rather than sunrise.  相似文献   

6.
Hoover JP  Reetz MJ 《Oecologia》2006,149(1):165-173
Interspecific brood parasitism in birds presents a special problem for the host because the parasitic offspring exploit their foster parents, causing them to invest more energy in their current reproductive effort. Nestling brown-headed cowbirds (Molothrus ater) are a burden to relatively small hosts and may reduce fledgling quality and adult survival. We documented food-provisioning rates of one small host, the prothonotary warbler (Protonotaria citrea), at broods that were similar in age (containing nestlings 8–9 days old), but that varied in composition (number of warbler and cowbird nestlings) and mass, and measured the effect of brood parasitism on offspring recruitment and adult returns in the host. The rate of food provisioning increased with brood mass, and males and females contributed equally to feeding nestlings. Controlling for brood mass, the provisioning rate was higher for nests with cowbirds than those without. Recruitment of warbler fledglings from unparasitized nests was 1.6 and 3.7 times higher than that of fledglings from nests containing one or two cowbirds, respectively. Returns of double-brooded adult male and female warblers decreased with an increase in the number of cowbirds raised, but the decrease was more pronounced in males. Reduced returns of warbler adults and recruitment of warbler fledglings with increased cowbird parasitism was likely a result of reduced survival. Cowbird parasitism increased the warblers’ investment in current reproductive effort, while exerting additional costs to current reproduction and residual reproductive value. Our study provides the strongest evidence to date for negative effects of cowbird parasitism on recruitment of host fledglings and survival of host adults.  相似文献   

7.
Nest desertion with subsequent renesting is a frequently cited response to parasitism by the brown-headed cowbird, Molothrus ater, yet the role of desertion as an antiparasite defence is widely debated. To determine whether desertion represents an evolutionary response to brown-headed cowbird parasitism, we searched the primary literature, yielding data on the desertion frequencies of 60 host populations from 35 species. Species were categorized according to three habitat types (forest, intermediate and nonforest). Because cowbirds prefer open habitat and rarely penetrate deeply into forests, nonforest species have long been exposed to widespread cowbird parasitism, whereas forest species have not. However, due to increased forest fragmentation, forest species are being increasingly exposed to extensive parasitism. The frequency of desertion of parasitized nests was significantly higher in nonforest than forest species, suggesting that the latter experience evolutionary lag. We also considered whether desertion is affected by predation frequency, degree of current or recent sympatry with cowbirds, parasitism frequency, length of host laying season, phylogenetic relationships, and potential cost of cowbird parasitism. None of these variables created biases that could account for the observed difference in desertion frequencies of nonforest and forest species. However, species that incur large costs when parasitized had higher desertion rates among nonforest species but not among forest species. These results indicate that increased nest desertion is an evolved response to cowbird parasitism, as one would otherwise expect no relationship between desertion frequency and thezx costs and length of exposure to cowbird parasitism. Although nearly all hosts have eggs easily distinguished from cowbird eggs, few or none desert in response to cowbird eggs. Instead, desertion may be a response to adult cowbirds. The scarcity of species that desert in response to cowbird eggs suggests that egg recognition is more difficult to evolve than heightened desertion tendencies and that egg recognition quickly leads to ejection behaviour once it does develop. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

8.
The brown-headed cowbird (Molothrus ater) is a widespread, obligate brood parasite of North American passerine birds. In southern Manitoba, where hosts are sympatric with cowbirds, American robins (Turdus migratorius) ejected parasitic eggs from all experimentally parasitized clutches (N = 25) and no eggs were accepted for more than four days. In contrast, robins in northern Manitoba, an area where cowbirds do not breed, accepted parasitic eggs in 33% of nests (N = 18) for at least five days. Acceptance of experimental cowbird eggs by a second host, the yellow warbler (Dendroica petechia), was similar in allopatric (100% of 20 nests) and sympatric (88.6% of 35 nests) populations, but models of a female cowbird elicited greater nest defense by warblers in the area of sympatry. Neither host rejected eggs of conspecifics, thus, rejection of cowbird eggs was not an epiphenomenon of conspecific brood parasitism. These results support the hypothesis that recognition of cowbirds and their eggs evolved as adaptations to counter cowbird parasitism and not some other selection pressure. The expression of anti-parasite defenses by some individuals within allopatric populations further suggests these traits may be controlled genetically but persist in such areas either through the continued introgression of rejecter genes from sympatric populations or because of the low cost of rejection behavior when parasitism is absent or rare.  相似文献   

9.
Parasitic cowbirds lay eggs in the nests of other species anddupe them into caring for their young. Unlike other brood parasites,cowbirds have not developed egg mimicry or bizarre chick morphology.However, most of them parasitize a large number of hosts. Severalfeatures of cowbirds have been proposed as more general adaptationsto brood parasitism. In this study, we used a recent molecularphylogeny as a historical framework to test the possible adaptationsof the parasitic cowbird, including egg size, eggshell thicknessand energy content of the eggs, length of the incubation period,and growth pattern of cowbird nestlings. We used a recentlydeveloped extension of independent contrasts to test whetherthe five cowbird species deviate from general allometric equations.We generated prediction intervals for a nonparasite that evolvedin the place of the cowbirds. By using these prediction intervals,we found that parasitic cowbirds had not reduced weight or energycontent of their eggs, nor their incubation period over evolutionarytime. Cowbird chicks and those of nonparasitic relatives hadsimilar growth pattern. The only characteristic that separatedparasitic cowbirds from their nonparasitic relatives was anincrease in eggshell thickness. All these findings were robustand resisted the use of three models of character evolution.The fact that most traits exhibited by cowbirds were inheritedfrom a nonparasitic ancestor does not rule out that they areadvantageous for parasitism. Future research should focus onsuch traits of cowbird relatives and on how these traits preadapteda particular lineage to become parasites.  相似文献   

10.
Female brood parasites are recognized as threats to reproductive success by many host species. Male brood parasites may accompany females while they search for nests to parasitize and males depredate nests throughout the nesting cycle. Hence, selection may also favour recognition of males. We examined whether two common host species perceive male brown-headed cowbirds ( Molothrus ater ) as brood parasites, as nest predators, or neither. We quantified visits of male cowbirds to nests of yellow warblers ( Dendroica petechia ) and red-winged blackbirds ( Ageliaus phoeniceus ) to assess the frequency with which these host species interact with male cowbirds. Males were observed near nests during hosts' laying and incubating stages, although less frequently than female cowbirds. No visits by cowbirds occurred while parents cared for nestlings. We then presented models of male and female cowbirds plus a non-threatening control to yellow warblers and red-winged blackbirds during laying and nestling periods. If hosts perceive males and females similarly, they should respond more intensely to the cowbird models during the laying period, when nests are most likely to be parasitized. Both species responded similarly to male and female cowbird models during laying, which suggests that hosts view cowbirds of both sexes as threats. The responses of yellow warblers with nestlings to male cowbirds were strongly influenced by the order of model presentation. Warblers first presented with the male cowbird gave much reduced anti-parasite responses than those that first interacted with the female then the male cowbird. These results suggest that yellow warblers recognized male vs. female cowbirds, but that discrimination was not expressed during laying. By contrast, red-winged blackbirds did not discriminate between male and female cowbirds at either nesting stage.  相似文献   

11.
Summary Evolutionary lag and resistance to puncture-ejection are two hypotheses explaining why hosts long exposed to brood parasitism by molothrine cowbirds accept their eggs. The former hypothesis assumes no physical constraints while the latter requires them. We show (1) that most acceptors of Brown-headed Cowbird eggs have small bills, (2) that the single species known to puncture cowbird eggs for ejection also has a small bill, and (3) that all grasp ejectors of Brown-headed Cowbird eggs have large bills. We propose that most acceptors cannot remove cowbird eggs by grasp ejection because their bills are too small. Small hosts probably cannot puncture cowbird eggs for ejection because their unusually thick shells make the costs of puncturing them higher than the benefits of ejection. This hypothesis is capable of explaining the success of cowbirds with scores of host species in the puzzling absence of egg mimicry.  相似文献   

12.
Nestling brown-headed cowbirds Molothrus ater typically hatch earlier and grow faster than young of the many host species of this generalist obligate brood parasite. However, a cowbird chick also benefits from the presence of some host nest mates as the parasite is provisioned disproportionately more with increasing brood size. Since asynchronous hatching affects both cowbird and host nestlings' growth and survival, mechanisms that optimize the timing of egg-laying by female parasites should be prevalent. Several habitat features might facilitate optimal timing of parasitic egg-laying and we examined whether aspects of host nesting habitat predicted cowbird hatching synchrony. We tested whether synchronous nests were less concealed, closer to perches, and located in areas of higher host density than asynchronous nests using a broad-scale information theoretic approach. There was no support for these predictions regarding song sparrow ( Melospiza melodia ; n=55) or yellow warbler ( Dendroica petechia ; n=67) nests parasitized by brown-headed cowbirds at Mono Lake, USA. For example, the best statistical models for predicting hatching synchrony in yellow warbler nests included nesting-patch width and nest-substrate shrub species. However, these relationships were relatively weak: both synchronous and asynchronous nests were in patches with statistically indistinguishable widths and the two dominant shrub species at our site contained similar proportions of synchronous and asynchronous nests. We conclude that the variability of host nesting habitats does not contribute to a biologically consistent effect on hatching synchrony by this generalist brood parasite.  相似文献   

13.
Avian obligate brood parasites lay their eggs in nests of host species, which provide all parental care. Brood parasites may be host specialists, if they use one or a few host species, or host generalists, if they parasitize many hosts. Within the latter, strains of host‐specific females might coexist. Although females preferentially parasitize one host, they may occasionally successfully parasitize the nest of another species. These host switching events allow the colonization of new hosts and the expansion of brood parasites into new areas. In this study, we analyse host switching in two parasitic cowbirds, the specialist screaming cowbird (Molothrus rufoaxillaris) and the generalist shiny cowbird (M. bonariensis), and compare the frequency of host switches between these species with different parasitism strategies. Contrary to expected, host switches did not occur more frequently in the generalist than in the specialist brood parasite. We also found that migration between hosts was asymmetrical in most cases and host switches towards one host were more recurrent than backwards, thus differing among hosts within the same species. This might depend on a combination of factors including the rate at which females lay eggs in nests of alternative hosts, fledging success of the chicks in this new host and their subsequent success in parasitizing it.  相似文献   

14.
Avian brood parasitism often has multiple negative effects on the reproductive success of the host. Most studies have focused on one or two of these effects, but rarely have they all been studied simultaneously for one species. I studied prothonotary warblers to quantify the effects of different intensities of (i.e. multiple) brood parasitism by brown-headed cowbirds, Molothrus ater, on the production of host and cowbird young and on the between-year returns of adult warblers. Host clutch size decreased with an increase in the number of cowbird eggs laid in nests. The hatching success of warbler and cowbird eggs decreased with increased cowbird eggs in nests, but was always higher for cowbird eggs than warbler eggs. The survival of warbler nestlings, but not cowbird nestlings, decreased with increased cowbird nestlings in the brood. An increase in the number of cowbird nestlings in broods resulted in a reduction in the average mass of warbler nestlings but not cowbird nestlings. The number of cowbird eggs or nestlings present did not affect nest predation, and the fledging of cowbirds did not influence the renesting interval of female warblers. In addition, the between-year returns of adult warblers were not negatively affected by brood parasitism. Decreased hatching success and nestling survival reduced the reproductive output of the warblers the most. These effects were substantial and appear to favour the evolution of behavioural responses that reduce the effects of brood parasitism on prothonotary warblers. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour   相似文献   

15.
Brood-parasitic young are reared in the nests of different species and can derive no genetic benefit from the survival of host offspring. However, although the nestlings of many parasitic cuckoo and honeyguide species routinely kill host young soon after hatching, nestling brown-headed cowbirds, Molothrus ater, tolerate host offspring and are commonly reared alongside them for at least part of the nestling period. I used comparative analyses of data from the literature to investigate whether brown-headed cowbird nestlings gain direct benefits by allowing host young to live. The brown-headed cowbird (44 g) parasitizes many passerines (adult mass range about 5-90 g) and the likelihood that host young survive to fledge from parasitized nests varies between species. In common with previous work, I found that host offspring mortality was highest in species whose offspring were relatively small compared with the cowbird nestling. Furthermore, cowbird nestlings were most likely to fledge when reared alongside host young of intermediate size. In these nests, one or two host young typically fledged as well. I suggest that cowbirds, and other host-tolerant brood parasites, could benefit from the presence of host nestlings through the assistance that host chicks offer in soliciting a higher provisioning rate, and that such benefits might outweigh the costs of having competition for food at each nest visit. Variation in this cost-benefit ratio could explain differences between brood parasite species in their tolerance of host young.  相似文献   

16.
Immunologists and evolutionary biologists are interested in how the immune system evolves to fit an ecological niche. We studied the relationship between exposure to parasites and strength of immunity by investigating the response of two species of New World cowbirds (genus Molothrus, Icteridae), obligate brood parasites with contrasting life history strategies, to experimental arboviral infection. The South American shiny cowbird (M. bonariensis) is an extreme host-generalist that lays its eggs in the nests of >225 different avian species. The Central American bronzed cowbird (M. aeneus) is a relative host-specialist that lays its eggs preferentially in the nests of approximately 12 orioles in a single sister genus. West Nile virus provided a strong challenge and delineated immune differences between these species. The extreme host-generalist shiny cowbird, like the North American host-generalist, the brown-headed cowbird, showed significantly lower viremia to three arboviruses than related icterid species that were not brood parasites. The bronzed cowbird showed intermediate viremia. These findings support the interpretation that repeated exposure to a high diversity of parasites favors the evolution of enhanced immunity in brood parasitic cowbirds and makes them useful models for future studies of innate immunity.  相似文献   

17.
Hauber  Mark E. 《Behavioral ecology》2003,14(2):227-235
All parental hosts of heterospecific brood parasites must paythe cost of rearing non-kin. Previous research on nest parasitismby brown-headed cowbirds (Molothrus ater) concluded that competitivesuperiority of the typically more intensively begging and largercowbird chick leads to preferential feeding by foster parentsand causes a reduction in the hosts' own brood. The larger sizeof cowbird nestlings can be the result of at least two causes:(1) cowbirds preferentially parasitize species with smallernestlings and lower growth rates; and/or (2) cowbirds hatchearlier than hosts. I estimated the cost of cowbird parasitismfor each of 29 species by calculating the difference betweenhosts' published brood sizes in nonparasitized and parasitizednests and using clutch size to standardize values. In this analysis,greater incubation length and lower adult mass, surrogate measuresof the hatching asynchrony and size difference between parasiteand hosts, were both related to greater costs of cowbird parasitismwithout bias owing to phylogeny. To establish causality, I manipulatedclutch contents of eastern phoebes (Sayornis phoebe) and examinedwhether earlier hatching by a single cowbird or phoebe egg reducesthe size of the rest of the original host brood. As predicted,greater hatching asynchrony increased the proportion of theoriginal phoebe brood that was lost. This measure of the costof parasitism was partially owing to increased hatching failureof the original eggs in asynchronous broods but was not at allrelated to the size differences of older and younger conspecificnestmates. However, proportional brood loss owing to an earlierhatching conspecific was consistently smaller than brood lossowing to asynchronous cowbirds in both naturally and experimentallyparasitized phoebe nests. These results imply that althoughhatching asynchrony is an important cause of the reduction ofhost broods in parasitized clutches, competitive features ofcowbird nestlings remain necessary to explain the full extentof hosts' reproductive costs caused by interspecific brood parasitism.  相似文献   

18.
The brown-headed cowbird (Molothrusater) is a generalist obligate brood parasite. Despite intensive study and growing concern over the negative impact of cowbird parasitism on populations of many hosts, very little is known about the factors influencing community-wide patterns of cowbird parasitism. Using systematic nest searches, nest parasitism was studied over two breeding seasons at a study site in northeastern Illinois encompassing grassland, forest-edge, and forest habitat, supporting a diverse avian community. Parasitism was observed for 18 out of 34 altricial bird species found nesting at the study site. A total of 299 cowbird eggs and nestlings were found in 191 of a total of 593 nests. Analyses revealed several ecological and behavioral factors associated with frequency of parasitism and the resulting distribution of cowbird eggs. Much higher frequencies of parasitism were found in edge and forest habitats than in grassland. Within the edge habitat, open nests were parasitized significantly more often than cavity nests. Among open nests in the edge habitat, the two largest species were never parasitized. Host behavior, particularly egg-ejection behavior, was associated with a reduced observed frequency of parasitism, but at least three species known to eject cowbird eggs were sometimes parasitized. For six common hosts capable of rearing cowbirds, we found no correlation between level of parasitism and host nest-survivorship, suggesting that fine-grained assessments of host quality by female cowbirds do not influence patterns of parasitism among acceptable host species, or that differences in host quality are not great and/or predictable enough for such fine-grained assessments. Our results suggest that when a variety of possible nests are available, the level of parasitism on a particular species is a balance between a␣cowbird's preference for a particular species and the effectiveness of host species' defenses. A conceptual model was developed that incorporates the observed correlation of cowbird eggs or nestlings with habitat, nest-type, host species' body mass, and host behavioral defenses. Additional community-wide studies of cowbird parasitism will test if this model is applicable to other avian communities. Received: 20 December 1996 / Accepted: 17 May 1997  相似文献   

19.
Ecological and behavioural data suggest that female brood parasitic brown-headed cowbirds Molothrus ater are host generalists; this predicts that there should be no genetically differentiated host races within cowbird populations. We tested this hypothesis by comparing differentiation in two rapidly evolving DNA markers (mtDNA control region sequence and nuclear DNA microsatellite loci) among unrelated cowbird chicks raised by two ecologically distinct hosts. No differentiation was observed in either marker supporting the absence of host race hypothesis.  相似文献   

20.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号