首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural studies of the streptavidin binding loop.   总被引:7,自引:5,他引:2       下载免费PDF全文
The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.  相似文献   

2.
Cooperativity plays an important role in the action of proteins bound to DNA. A simple mechanism for cooperativity, in the form of a tension-mediated interaction between proteins bound to DNA at two different locations, is proposed. These proteins are not in direct physical contact. DNA segments intercalating bound proteins are modeled as a worm-like chain, which is free to deform in two dimensions. The tension-controlled protein-protein interaction is the consequence of two effects produced by the protein binding. The first is the introduction of a bend in the host DNA and the second is the modification of the bending modulus of the DNA in the immediate vicinity of the bound protein. The interaction between two bound proteins may be either attractive or repulsive, depending on their relative orientation on the DNA. Applied tension controls both the strength and the range of protein-protein interactions in this model. Properties of the cooperative interaction are discussed, along with experimental implications.  相似文献   

3.
Cardiolipins and biomembrane function.   总被引:10,自引:0,他引:10  
Evidence is discussed for roles of cardiolipins in oxidative phosphorylation mechanisms that regulate State 4 respiration by returning ejected protons across and over bacterial and mitochondrial membrane phospholipids, and that regulate State 3 respiration through the relative contributions of proteins that transport protons, electrons and/or metabolites. The barrier properties of phospholipid bilayers support and regulate the slow proton leak that is the basis for State 4 respiration. Proton permeability is in the range 10(-3)-10(-4) cm s-1 in mitochondria and in protein-free membranes formed from extracted mitochondrial phospholipids or from stable synthetic phosphatidylcholines or phosphatidylethanolamines. The roles of cardiolipins in proton conductance in model phospholipid membrane systems need to be assessed in view of new findings by Hübner et al. [313]: saturated cardiolipins form bilayers whilst natural highly unsaturated cardiolipins form nonlamellar phases. Mitochondrial cardiolipins apparently participate in bilayers formed by phosphatidylcholines and phosphatidylethanolamines. It is not yet clear if cardiolipins themselves conduct protons back across the membrane according to their degree of fatty acyl saturation, and/or modulate proton conductance by phosphatidylcholines and phosphatidylethanolamines. Mitochondrial cardiolipins, especially those with high 18:2 acyl contents, strongly bind many carrier and enzyme proteins that are involved in oxidative phosphorylation, some of which contribute to regulation of State 3 respiration. The role of cardiolipins in biomembrane protein function has been examined by measuring retained phospholipids and phospholipid binding in purified proteins, and by reconstituting delipidated proteins. The reconstitution criterion for the significance of cardiolipin-protein interactions has been catalytical activity; proton-pumping and multiprotein interactions have yet to be correlated. Some proteins, e.g., cytochrome c oxidase are catalytically active when dimyristoylphosphatidylcholine replaces retained cardiolipins. Cardiolipin-protein interactions orient membrane proteins, matrix proteins, and on the outerface receptors, enzymes, and some leader peptides for import; activate enzymes or keep them inactive unless the inner membrane is disrupted; and modulate formation of nonbilayer HII-phases. The capacity of the proton-exchanging uncoupling protein to accelerate thermogenic respiration in brown adipose tissue mitochondria of cold-adapted animals is not apparently affected by the increased cardiolipin unsaturation; this protein seems to take over the protonophoric role of cardiolipins in other mitochondria. Many in vivo influences that affect proton leakage and carrier rates selectively alter cardiolipins in amount per mitochondrial phospholipids, in fatty acyl composition and perhaps in sidedness; other mitochondrial membrane phospholipids respond less or not at all.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Specific interactions between lipids and membrane proteins have been observed in recent high-resolution crystal structures of membrane proteins. A number of cytochrome oxidase structures were analyzed, along with many amino acid sequences of membrane-spanning regions aligned according to their location in the membrane. The results reveal conservation of lipid-binding sites and of the residues that form them. These studies imply that bound lipids have important roles that are crucial to the assembly, structure, or activity of the protein. Evidence for some of these roles in subunit interactions, membrane insertion, and protein-protein complex formation is reviewed.  相似文献   

5.
F plasmid-mediated bacterial conjugation requires interactions between a relaxosome component, TraM, and the coupling protein TraD, a hexameric ring ATPase that forms the cytoplasmic face of the conjugative pore. Here we present the crystal structure of the C-terminal tail of TraD bound to the TraM tetramerization domain, the first structural evidence of relaxosome-coupling protein interactions. The structure reveals the TraD C-terminal peptide bound to each of four symmetry-related grooves on the surface of the TraM tetramer. Extensive protein-protein interactions were observed between the two proteins. Mutational analysis indicates that these interactions are specific and required for efficient F conjugation in vivo. Our results suggest that specific interactions between the C-terminal tail of TraD and the TraM tetramerization domain might lead to more generalized interactions that stabilize the relaxosome-coupling protein complex in preparation for conjugative DNA transfer.  相似文献   

6.
We present an analysis of the water molecules immobilized at the protein-protein interfaces of 115 homodimeric proteins and 46 protein-protein complexes, and compare them with 173 large crystal packing interfaces representing nonspecific interactions. With an average of 15 waters per 1000 A2 of interface area, the crystal packing interfaces are more hydrated than the specific interfaces of homodimers and complexes, which have 10-11 waters per 1000 A2, reflecting the more hydrophilic composition of crystal packing interfaces. Very different patterns of hydration are observed: Water molecules may form a ring around interfaces that remain "dry," or they may permeate "wet" interfaces. A majority of the specific interfaces are dry and most of the crystal packing interfaces are wet, but counterexamples exist in both categories. Water molecules at interfaces form hydrogen bonds with protein groups, with a preference for the main-chain carbonyl and the charged side-chains of Glu, Asp, and Arg. These interactions are essentially the same in specific and nonspecific interfaces, and very similar to those observed elsewhere on the protein surface. Water-mediated polar interactions are as abundant at the interfaces as direct protein-protein hydrogen bonds, and they may contribute to the stability of the assembly.  相似文献   

7.
Two monoclinic (P2(1)) crystal forms of human serum amyloid P component (SAP) in complex with the 4,6-pyruvate acetal of beta-D-galactose (MObetaDG) were prepared. Structure analysis by molecular replacement and refinement at 2.2A resolution revealed that crystal form 1 (a=95.76A, b=70.53A, c=103.41A, beta=96.80 degrees) contained a pentamer in the asymmetric unit with a structure very similar to that of the published search model. The mode of ligand co-ordination was also similar except that four of the five subunits showed bound ligand with an additional H-bond between O1 of the galactose and the side-chain of Lys79. One sub-unit showed no bound ligand and a vacant calcium site close to a crystal contact. The 2.6A resolution structure of crystal form 2 (a=118.60A, b=109.10A, c=120.80A and beta=95.16 degrees ) showed ten sub-units in the asymmetric unit, all with two bound calcium ions and ligand. The most extensive protein-protein interactions between pentamers describe an AB face-to-face interaction involving 15 ion pairs that sandwiches five molecules of bound MObetaDG at the interface.  相似文献   

8.
The redesign of protein-protein interactions is a stringent test of our understanding of molecular recognition and specificity. Previously we engineered a modest specificity switch into the colicin E7 DNase-Im7 immunity protein complex by identifying mutations that are disruptive in the native complex, but can be compensated by mutations on the interacting partner. Here we extend the approach by systematically sampling alternate rigid body orientations to optimize the interactions in a binding mode specific manner. Using this protocol we designed a de novo hydrogen bond network at the DNase-immunity protein interface and confirmed the design with X-ray crystallographic analysis. Subsequent design of the second shell of interactions guided by insights from the crystal structure on tightly bound water molecules, conformational strain, and packing defects yielded new binding partners that exhibited specificities of at least 300-fold between the cognate and the non-cognate complexes. This multi-step approach should be applicable to the design of polar protein-protein interactions and contribute to the re-engineering of regulatory networks mediated by protein-protein interactions.  相似文献   

9.
Clark LA  van Vlijmen HW 《Proteins》2008,70(4):1540-1550
A distance-dependent knowledge-based potential for protein-protein interactions is derived and tested for application in protein design. Information on residue type specific C(alpha) and C(beta) pair distances is extracted from complex crystal structures in the Protein Data Bank and used in the form of radial distribution functions. The use of only backbone and C(beta) position information allows generation of relative protein-protein orientation poses with minimal sidechain information. Further coarse-graining can be done simply in the same theoretical framework to give potentials for residues of known type interacting with unknown type, as in a one-sided interface design problem. Both interface design via pose generation followed by sidechain repacking and localized protein-protein docking tests are performed on 39 nonredundant antibody-antigen complexes for which crystal structures are available. As reference, Lennard-Jones potentials, unspecific for residue type and biasing toward varying degrees of residue pair separation are used as controls. For interface design, the knowledge-based potentials give the best combination of consistently designable poses, low RMSD to the known structure, and more tightly bound interfaces with no added computational cost. 77% of the poses could be designed to give complexes with negative free energies of binding. Generally, larger interface separation promotes designability, but weakens the binding of the resulting designs. A localized docking test shows that the knowledge-based nature of the potentials improves performance and compares respectably with more sophisticated all-atoms potentials.  相似文献   

10.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

11.
DNA binding by NFAT1 as a dimer has been implicated in the activation of host and viral genes. Here we report a crystal structure of NFAT1 bound cooperatively as a dimer to the highly conserved kappa B site from the human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR). This structure reveals a new mode of dimerization and protein-DNA recognition by the Rel homology region (RHR) of NFAT1. The two NFAT1 monomers form a complete circle around the kappa B DNA through protein-protein interactions mediated by both their N- and C-terminal subdomains. The major dimer interface, formed by the C-terminal domain, is asymmetric and substantially different from the symmetric dimer interface seen in other Rel family proteins. Comparison to other NFAT structures, including NFAT5 and the NFAT1-Fos-Jun-ARRE2 complex, reveals that NFAT1 adopts different conformations and its protein surfaces mediate distinct protein-protein interactions in the context of different DNA sites.  相似文献   

12.
Cysteine plays a major role in the antioxidative defense mechanisms of the human parasite Entameoba histolytica. The major route of cysteine biosynthesis in this parasite is the condensation of O-acetylserine with sulfide by the de novo cysteine biosynthetic pathway involving two key enzymes O-acetyl-L-serine sulfhydrylase (OASS) and serine acetyl transferase (SAT). The crystal structure of native OASS from Entameoba histolytica (EhOASS) has been determined at 1.86 A resolution and in complex with its product cysteine at 2.4 A resolution. In comparison with other known OASS structures, insertion in the N-terminal region and C-terminal helix reveal critical differences, which may influence the protein-protein interactions. In spite of lacking chloride binding site at the dimeric interface, the N-terminal extension compared with other known cysteine synthases, participates in dimeric interactions in an interesting domain swapping manner, enabling it to form a stronger dimer. Sulfate is bound in the active site of the native structure, which is replaced by cysteine in the cysteine bound form causing reorientation of the small N-terminal domain and thus closure of the active site. Ligand binding constants of OAS, Cys, and Met with EhOASS are comparable with other known OASS indicating similar active site arrangement and dynamics. The cysteine complexed structure represents the snapshot of the enzyme just before releasing the final product with a closed active site. The C-terminal helix positioning in the EhOASS may effect its interactions with EhSAT and thus influencing the formation of the cysteine synthase complex in this organism.  相似文献   

13.
The death domain and death effector domain are two common motifs that mediate protein-protein interactions between components of cell death signaling complexes. The mechanism by which these domains engage their binding partners has been explored by extensive mutagenesis of two death adaptors, FADD and TRADD, suggesting that a death adaptor can discriminate its intended binding partners from other proteins harboring similar motifs. Death adaptors are found to utilize one of two topologically conserved surfaces for protein-protein interaction, whether that partner is another adaptor or its cognate receptor. These surfaces are topologically related to the interaction between death domains observed in the x-ray crystal structure of the Drosophila adaptor Tube bound to Pelle kinase. Comparing the topology of protein-protein interactions for FADD complexes to TRADD complexes reveals that FADD uses a Tube-like surface in each of its death motifs to engage either CD95 or TRADD. TRADD reverses these roles, employing a Pelle-like surface to interact with either receptor TNFR1 or adaptor FADD. Since death adaptors display a Tube-like or Pelle-like preference for engaging their binding partners, Tube/Pelle-like pairing provides a mechanism for death adaptor discrimination of death receptors.  相似文献   

14.
A major challenge in the field of protein-protein docking is to discriminate between the many wrong and few near-native conformations, i.e. scoring. Here, we introduce combinatorial complex-type-dependent scoring functions for different types of protein-protein complexes, protease/inhibitor, antibody/antigen, enzyme/inhibitor and others. The scoring functions incorporate both physical and knowledge-based potentials, i.e. atomic contact energy (ACE), the residue pair potential (RP), electrostatic and van der Waals' interactions. For different type complexes, the weights of the scoring functions were optimized by the multiple linear regression method, in which only top 300 structures with ligand root mean square deviation (L_RMSD) less than 20 A from the bound (co-crystallized) docking of 57 complexes were used to construct a training set. We employed the bound docking studies to examine the quality of the scoring function, and also extend to the unbound (separately crystallized) docking studies and extra 8 protein-protein complexes. In bound docking of the 57 cases, the first hits of protease/inhibitor cases are all ranked in the top 5. For the cases of antibody/antigen, enzyme/inhibitor and others, there are 17/19, 5/6 and 13/15 cases with the first hits ranked in the top 10, respectively. In unbound docking studies, the first hits of 9/17 protease/inhibitor, 6/19 antibody/antigen, 1/6 enzyme/inhibitor and 6/15 others' complexes are ranked in the top 10. Additionally, for the extra 8 cases, the first hits of the two protease/inhibitor cases are ranked in the top for the bound and unbound test. For the two enzyme/inhibitor cases, the first hits are ranked 1st for bound test, and the 119th and 17th for the unbound test. For the others, the ranks of the first hits are the 1st for the bound test and the 12th for the 1WQ1 unbound test. To some extent, the results validated our divide-and-conquer strategy in the docking study, which might hopefully shed light on the prediction of protein-protein interactions.  相似文献   

15.
Nova onconeural antigens are neuron-specific RNA-binding proteins implicated in paraneoplastic opsoclonus-myoclonus-ataxia (POMA) syndrome. Nova harbors three K-homology (KH) motifs implicated in alternate splicing regulation of genes involved in inhibitory synaptic transmission. We report the crystal structure of the first two KH domains (KH1/2) of?Nova-1 bound to an in?vitro selected RNA hairpin, containing a UCAG-UCAC high-affinity binding site. Sequence-specific intermolecular contacts in the complex involve KH1 and the second UCAC repeat, with the RNA scaffold buttressed by interactions between repeats. Whereas the canonical RNA-binding surface of KH2 in the above complex engages in protein-protein interactions in the crystalline state, the individual KH2 domain can sequence-specifically target the UCAC RNA element in solution. The observed antiparallel alignment of KH1 and KH2 domains in the crystal structure of the complex generates a scaffold that could facilitate target pre-mRNA looping on Nova binding, thereby potentially explaining Nova's functional role in splicing regulation.  相似文献   

16.
E Sedlák  N C Robinson 《Biochemistry》1999,38(45):14966-14972
Phospholipase A(2) from Crotalus atrox hydrolyzes all of the phospholipids that are associated with purified, detergent-solubilized cytochrome c oxidase; less than 0.05 mol cardiolipin (CL)(1) remains bound per mol enzyme. Coincident with the hydrolysis of cardiolipin is a reversible decrease of 45-50% in the electron transport activity of the dodecylmaltoside-solubilized enzyme. Full activity is recoverable (90-98%) by addition of exogenous cardiolipin, but not by either phosphatidylcholine or phosphatidylethanolamine. Unexpectedly, cleavage of cardiolipin causes the dissociation of both subunits VIa and VIb from the enzyme. These are the two subunits that form the major protein-protein contacts between the two monomeric units within the dimeric complex. Although hydrolysis of CL by phospholipase A(2) and loss of these subunits is linked, the reverse process does not occur, i.e., removal of subunits VIa and VIb does not cause dissociation of the two functionally important, tightly bound cardiolipins. Nor does addition of exogenous cardiolipin result in reassociation of the two subunits with the remainder of the complex. We conclude that cardiolipin is not only essential for full electron transport activity, but also has an important structural role in stabilizing the association of subunits VIa and VIb within the remainder of the bovine heart enzyme.  相似文献   

17.
18.
Lee Y  Lee EK  Cho YW  Matsui T  Kang IC  Kim TS  Han MH 《Proteomics》2003,3(12):2289-2304
We have developed a highly sensitive microarray protein chip, ProteoChip, coated with ProLinker, novel calixcrown derivatives with a bifunctional coupling property that permits efficient immobilization of capture proteins on solid matrixes and makes high-throughput analysis of protein-protein interactions possible. The analysis of quartz crystal microbalance showed that both monoclonal antibody (mAb) and antigen (Ag) bound to the gold film of the sensor surface coated with ProLinker B and that it is useful for studies of Ab-Ag interactions. ProteoChip, aminated glass slide coated with ProLinker A, was also demonstrated to be useful for preparation of high-density array spots by using a microarrayer and for analysis of analyte Ags either by direct or sandwich methods of fluorescence immunoassay. The detection sensitivity of ProteoChip was as low as 1-10 femtogram/mL of analyte protein, useful for detection of tumor markers. ProteoChip was also useful for studies of direct protein-protein interactions as demonstrated by analysis of integrin-extracellular matrix protein interaction. These experimental results suggest that ProteoChip is a powerful tool for development of chip-based lead screening microarrays to monitor protein-protein interactions (i.e. drug target) as well as for biomarker assays which require high detection sensitivity.  相似文献   

19.
Speciation is characterized by the development of reproductive isolating barriers between diverging groups. Intrinsic post-zygotic barriers of the type envisioned by Bateson, Dobzhansky, and Muller are deleterious epistatic interactions among loci that reduce hybrid fitness, leading to reproductive isolation. The first formal population genetic model of the development of these barriers was published by Orr in 1995, and here we develop a more general model of this process by incorporating finite protein-protein interaction networks, which reduce the probability of deleterious interactions in vivo. Our model shows that the development of deleterious interactions is limited by the density of the protein-protein interaction network. We have confirmed our analytical predictions of the number of possible interactions given the number of allele substitutions by using simulations on the Saccharomyces cerevisiae protein-protein interaction network. These results allow us to define the rate at which deleterious interactions are expected to form, and hence the speciation rate, for any protein-protein interaction network.  相似文献   

20.
The coverage and reliability of protein-protein interactions determined by high-throughput experiments still needs to be improved, especially for higher organisms, therefore the question persists, how interactions can be verified and predicted by computational approaches using available data on protein structural complexes. Recently we developed an approach called IBIS (Inferred Biomolecular Interaction Server) to predict and annotate protein-protein binding sites and interaction partners, which is based on the assumption that the structural location and sequence patterns of protein-protein binding sites are conserved between close homologs. In this study first we confirmed high accuracy of our method and found that its accuracy depends critically on the usage of all available data on structures of homologous complexes, compared to the approaches where only a non-redundant set of complexes is employed. Second we showed that there exists a trade-off between specificity and sensitivity if we employ in the prediction only evolutionarily conserved binding site clusters or clusters supported by only one observation (singletons). Finally we addressed the question of identifying the biologically relevant interactions using the homology inference approach and demonstrated that a large majority of crystal packing interactions can be correctly identified and filtered by our algorithm. At the same time, about half of biological interfaces that are not present in the protein crystallographic asymmetric unit can be reconstructed by IBIS from homologous complexes without the prior knowledge of crystal parameters of the query protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号