首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The trypsin-catalyzed coupling of bovine (Boc)2-desoctapeptide (B23-B30)-insulin with synthetic octapeptides, H-Gly-X2-X3-X4-Thr-Pro-Lys(Boc)-Thr-OH (X2 = Phe or Ala, X3 = Phe or Ala, X4 = Tyr or Ala), followed by deprotection and purification produced the [AlaB24, ThrB30]-, [AlaB25, ThrB30]-, and [AlaB26, ThrB30]-analogs of bovine insulin in yields of 32, 35, and 32%, respectively. The biological activity of these analogs decreased in the order, normal insulin ([ThrB30]-bovine insulin) = AlaB26-insulin > AlaB25-insulin > AlaB24-insulin, as assayed for receptor binding and some other biological effects, in contrast with the corresponding Leu-analogs of human insulin, in which the activity decreased in the order, normal insulin > LeuB24-insulin > LeuB25-insulin. The affinity to insulin antibodies greatly diminished in both AlaB24-insulin and LeuB24-insulin but not in the B25-substituted analogs. The CD spectra of the Leu- and the Ala-analogs were compared with those of normal insulins to show that no apparent correlation seems to exist between the decrease in biological activity and the conformational changes observed in solution. The effects of organic solvents on the peptide-bond equilibrium and on the stability of trypsin are also discussed.  相似文献   

2.
In this study, we prepared several shortened and full-length insulin analogues with substitutions at position B26. We compared the binding affinities of the analogues for rat adipose membranes with their ability to lower the plasma glucose level in nondiabetic Wistar rats in vivo after subcutaneous administration, and also with their ability to stimulate lipogenesis in vitro. We found that [NMeHisB26]-DTI-NH 2 and [NMeAlaB26]-DTI-NH 2 were very potent insulin analogues with respect to their binding affinities (214 and 465%, respectively, compared to that of human insulin), but they were significantly less potent than human insulin in vivo. Their full-length counterparts, [NMeHisB26]-insulin and [NMeAlaB26]-insulin, were less effective than human insulin with respect to binding affinity (10 and 21%, respectively) and in vivo activity, while [HisB26]-insulin exhibited properties similar to those of human insulin in all of the tests we carried out. The ability of selected analogues to stimulate lipogenesis in adipocytes was correlated with their biological potency in vivo. Taken together, our data suggest that the B26 residue and residues B26-B30 have ambiguous roles in binding affinity and in vivo activity. We hypothesize that our shortened analogues, [NMeHisB26]-DTI-NH 2 and [NMeAlaB26]-DTI-NH 2, have different modes of interaction with the insulin receptor compared with natural insulin and that these different modes of interaction result in a less effective metabolic response of the insulin receptor, despite the high binding potency of these analogues.  相似文献   

3.
Replacement of B25-phenylalanine by leucine in the insulin sequence causes marked inactivation. The effect of this sequence variation was studied here in des-(B26-30)-insulin. [LeuB25]des-(B26-30)-insulin and its B25-amide were prepared by trypsin-mediated semisynthesis from N-terminally protected des-(B23-30)-insulin and synthetic tripeptides. The relative lipogenic potency in isolated rat adipocytes was 8.0% for the truncated analogue with a free B25-carboxyl function, and 18.1% for the amidated analogue. Binding to cultured human IM-9 lymphocytes was 4% and 9%, respectively. Thus, both shortened insulins are markedly more active than [LeuB25]insulin. The PheB25----LeuB25 substitution in both the shortened and the full sequence has a moderate effect on the CD spectrum, indicating that the gross main chain conformation is largely retained in both molecules. Independent of the substitution an absolute increase of the circular dichroism is observed upon amidation of the B25-carboxyl group.  相似文献   

4.
本文报道了[B10,22-Asp,B25-Tyr-NH2]-去B链羧端五肽胰岛素的制备及其生物活性。结果表明,这一类似物的生物活力比去五肽胰岛素(DPI)的活力高一倍,但却比Gerald所报道的[B10-Asp,B25-Tyr-NH_2]-DPI的活力低很多,说明后者的高活性可能依赖于分子中B22-Arg的存在。  相似文献   

5.
Several semisynthetic analogues of human insulin were prepared by enzyme-assisted coupling of synthetic octapeptides to the C-terminal of porcine desoctapeptide insulin. We report the receptor-binding and biological properties of [LeuB24]- and [LeuB25]-insulins, one of which has the same sequence as a “mutant” insulin recently found in a diabetic patient (Tager, H. et al.(1979) Nature 28:121–125). [LeuB24]- and [LeuB25]-insulins had, respectively, 8–12% and 0.9–1.1% of the binding affinity of human insulin, and 11% and 2.7% of its potency in stimulating lipogenesis in isolated rat fat cells. Neither one was an antagonist of the biological effects of native insulin. While the ability of [LeuB24]-insulin to induce negative cooperativity was clearly impaired, that of [LeuB25]-insulin was almost abolished. [LeuB25]-insulin was also a potent antagonist of the negative cooperativity induced by native insulin.  相似文献   

6.
摘要:为了研究人类胰岛素B链第26位的酪氨酸对胰岛素和受体之间的结合的影响,包括单独的氨基酸替换或化合物替换的不同的胰岛素类似物被合成,其中化合物替代的类似物的B链C末端都减少了4个氨基酸。在对它们与胰岛素受体的亲和力进行研究中,结果发现它们与胰岛素受体的亲和力没有丢失, HisB26类似物和N-MeHisB26类似物的结合能力与胰岛素相比改变不大,分别是胰岛素的72 %和107 %。N-MeGluB26类似物,AadB26类似物和Phe (4-carboxy) B26类似物的结合能力有很大的提高,分别是130 %, 234 %和160 %。  相似文献   

7.
[SerB24]-insulin, the second structurally abnormal mutant insulin, and [SerB25]-insulin were semisynthesized and were studied for receptor binding and biological activity. Receptor binding and biological activity determined by its ability to increase 2-deoxy-glucose uptake in rat adipocytes were 0.7-3% of native insulin for [SerB24]-insulin and 3-8% for [SerB25]-insulin. Negative cooperative effect of these analogues was also markedly decreased. Immunoreactivity of [SerB24]-insulin was decreased whereas that of [SerB25]-insulin was normal. Markedly decreased receptor binding of [SerB24]-insulin appeared to be due to substitution of hydrophobic amino acid, Phe, with a polar amino acid, Ser, at B24.  相似文献   

8.
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.  相似文献   

9.
Semisynthetic des-(B27-B30)-insulins with modified B26-tyrosine   总被引:1,自引:0,他引:1  
Semisynthetic des-(B27-B30)-insulins containing modified B26-tyrosine residues were prepared to refine the understanding of the importance of position B26 with regard to biological and structural properties of the hormone. The following shortened insulin analogues were synthesized by trypsin-catalysed peptide-bond formation between the C-terminal amino acid ArgB22 of des-(B23-B30)-insulin and synthetic tetrapeptides as amino components: des-(B27-B30)-insulin, des-(B27-B30)-insulin-B26-methyl ester, -B26-carboxamide with varying C-terminal hydrophobicity of the B-chain, and [Tyr(NH2)B26]-, [Tyr(NO2)B26]-, [Tyr(I2)B26]-, [D-TyrB26]des-(B27-B30)-insulin-B26-carboxamide containing non-proteinogenic amino acids in position B26. Starting from insulin and an excess of synthetic Gly-Phe-Phe-Tyr-OMe as nucleophile, des-(B27-B30)-insulin-B26-methyl ester--the formal transpeptidation product at ArgB22--was formed in one step. Biological in vitro properties (binding to cultured human IM-9 lymphocytes, relative lipogenic potency in isolated rat adipocytes) of all semisynthetic analogues are reported, ranging from slightly decreased to two-fold receptor affinity and nearly three-fold biopotency relative to insulin. If the C-terminal tetrapeptide B27-B30 is removed, full relative insulin activity is still preserved, while the shortening results in the loss of ability to associate in solution. Only after carboxamidation or methyl esterification of TyrB26 the self-association typical of native insulin can be observed, and the CD-spectral effects in the near UV spectrum related to association and hexamerization of the native hormone are qualitatively reestablished. The results of this investigation underline the importance of position B26 to the modulation of hormonal properties and solution structure of the shortened insulins.  相似文献   

10.
By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Tyr or their corresponding 3,5-diiodo derivatives) in this region demonstrates a wide divergence in the acceptance both of configurational change (with [D-TyrB24,PheB26]insulin and [D-TyrB25,PheB26]insulin exhibiting 160 and 0.1% of the receptor binding potency of insulin, respectively) and of detailed side chain structure (with [TyrB24,PheB26]insulin and [TyrB25,PheB26]insulin exhibiting 2 and 80% of the receptor binding potency of insulin, respectively). Additional experiments addressed the solvent accessibilities of the 4 tyrosine residues of insulin and the insulin analogs at selected peptide concentrations by use of analytical radioiodination. Whereas two analogs ([TyrB25,PheB26]insulin and [D-TyrB24,PheB26]insulin) were found to undergo self aggregation, no strict correlation was found between the ability of an analog to aggregate and its potency for interaction with the insulin receptor. Related findings are discussed in terms of the interplay between side chain and main chain structure in the COOH-terminal domain of the insulin B-chain and the structural attributes of insulin that determine the affinity of insulin-receptor interactions.  相似文献   

11.
In the present study, we describe the specificity and the autoradiographic distribution of insulin binding sites in the rat central nervous system (CNS) after in vitro incubation of brain sections with [125I]-14A insulin. Increasing concentrations of unlabeled insulin produced a dose-dependent inhibition of [125I]-insulin binding which represented 92 +/- 2% displacement with 3 X 10(-5) M, whatever the brain sections tested. Half-maximum inhibition with native insulin was obtained with 2.2 X 10(-9) M, with 10(-7) M proinsulin whereas glucagon had no effect. Under our experimental conditions, no degradation of [125I]-insulin was observed. Autoradiograms obtained by apposition of LKB 3H-Ultrofilm showed a widespread distribution of [125I]-insulin in rat CNS. However, quantitative analysis of the autoradiograms with 10(-10) M of labeled insulin, showed a high number of [125I]-insulin binding sites in the choroid plexus, olfactory areas, in both cerebral and cerebellar cortices, the amygdaloid complex and in the septum. In the hippocampal formation, the dorsal dentate gyrus and various subfields of CA1, CA2 and CA3 were labeled. Moreover, arcuate, dorso- and ventromedial nuclei of the hypothalamus contained high concentrations of [125I]-insulin whereas a low density was observed in the mesencephalon. The metabolic role of insulin in the CNS is supported by the large distribution of insulin binding sites in the rat brain. However, the presence of high affinity binding sites in selective areas involved in perception and integrative processes as well as in the regulation of both feeding behavior and neuroendocrine functions, suggests a neuromodulatory role of insulin in the brain.  相似文献   

12.
本文报道了用化学半合成途径从天然猪胰岛素制备[B2-Lys]-胰岛素的过程。人胎盘细胞膜胰岛素受体结合试验表明:[B2-Lys]-胰岛素的受体结合能力只有天然胰岛素的80%,降兔血糖作用与时间关系的结果表明它没有长效作用。本文还对这些结果进行了讨论。  相似文献   

13.
The preparation and characterization of two novel LysB29 selectively labelled fluorescent derivatives of human insulin are described. Two probes were chosen: 4-chloro-7-nitrobenz-2-oxa-1,3-diazole (NBD) and 7-methoxycoumarin-4-acetic acid (MCA), which have a relatively small, compact structure and are able to react with amino groups to form highly fluorescent derivatives. The combination of solid phase peptide synthesis and enzymatic semisynthesis was chosen for preparation of these fluorescent derivatives. Using two different protocols of solid-phase peptide synthesis, two fluorescent octapeptides were prepared corresponding to the position B23-B30 of human insulin, each with a different fluorescent label, NBD or MCA, on the epsilon-amino group of lysine. Then, the fluorescent octapeptides were coupled to desoctapeptide-(B23-B30)-insulin by a trypsin catalysed reaction. The receptor binding affinities of two novel fluorescent derivatives of human insulin with NBD and MCA (HI-NBD and HI-MCA) were determined on rat adipose tissue plasma membranes. Both fluorescent insulins, HI-NBD and HI-MCA, had only slightly reduced binding affinity and will be used for studying the interaction of insulin with its receptor.  相似文献   

14.
Two analogs of bovine insulin, [des(tetrapeptide B27--30), Tyr(NH2)26-B] and [des(pentapeptide B26--30), Phe(NH2)25-B] insulin, which differ from the parent molecule in that the C-terminal tetrapeptide and pentapeptide sequences, respectively, from the B chain have been eliminated and the newly exposed residues are amidated, have been synthesized. The [des(tetrapeptide B27--30), Tyr(NH2)26-B] insulin shows potencies of 16.8 IU/mg by the mouse convulsion assay method and 10.8 IU/mg by the radioimmunoassay method. The [des(pentapeptide B26--30), Phe(NH2)25-B] insulin possesses a potency of 10.5 IU/mg when assayed by the mouse convulsion method and 14 IU/mg by the radioimmunoassay technique. The potencies of these analogs are higher than the potencies of the respective non-amidated derivatives (Katsoyannis et al., 1973, 1974). It is speculated that the gradual decline of biological activity observed as amino acid residues are eliminated from the C-terminal region of the B chain of insulin is due to the proximity of a hydrophilic carboxyl group to the hydrophobic core of the protein molecule.  相似文献   

15.
[D-PheB24]- and [D-PheB25]-human insulin were semisynthesized from porcine insulin by enzyme assisted coupling method. Receptor binding ability of [D-PheB24]- and [D-PheB25]-insulin was 180% and 4%, respectively, of that of human insulin. Increased affinity of [D-PheB24]-insulin was ascribed to markedly decreased dissociation rate in binding to human cultured lymphocytes. Negative cooperative effect of [D-PheB24]insulin was also increased to twice of that of human insulin. Biological activity of these analogues was assessed by 2-deoxy-glucose uptake studies in isolated adipocytes and the ability of [D-PheB24]- and [D-PheB25]-insulin was 140% and 4%, respectively, of that of human insulin. These findings suggest that B25 L-Phe is more crucial for receptor binding and that [D-PheB24]-insulin is the first semisynthetic insulin to show increased affinity for insulin receptors.  相似文献   

16.
Human [LeuB-24]- and [LeuB-25]-insulins were semi-synthesized from porcine insulin by an enzyme-assisted coupling method. The receptor-binding ability of [LeuB-24]- and [LeuB-25]-insulins was 30--48% and 2--5% respectively of that of human insulin. There was no significant difference in degradation between human insulin and these analogues on incubation with isolated adipocytes. The decreased affinity of these analogues was due to an increased dissociation rate rather than a change in the association rate of their binding to human cultured lymphocytes. The negative co-operative effect of [LeuB-24]- and [LeuB-25]-insulin was decreased to 50 and 1% respectively of that of human insulin at a concentration of 100 ng/ml. The ability of [LeuB-24]- and [LeuB-25]-insulin to stimulate 2-deoxyglucose uptake in isolated rat adipocytes was 35 and 4% respectively of that of human insulin. These analogues did not have an antagonistic effect on the biological activity of human insulin. The immunoreactivity of [LeuB-25]insulin was similar to that of porcine or human insulin, whereas [LeuB-24]insulin demonstrated decreased binding to anti-(porcine insulin) antibodies. These findings suggest that B-chain phenylalanine-25 residue is more crucial for receptor binding and negative co-operativity, whereas the B-chain phenylalanine-24 residue may play a more important role in binding to anti-insulin antibody.  相似文献   

17.
Ligands for insulin receptor isolation   总被引:1,自引:0,他引:1  
F M Finn  G Titus  K Hofmann 《Biochemistry》1984,23(12):2554-2558
Biotinylated insulins are bivalent molecules having the ability to bind to insulin receptors on the one hand and to "avidins" on the other. In order to be useful as ligands for insulin receptor isolation, biotinylated insulins must be developed that have the capacity to bind simultaneously to both and insulin receptor. The present investigation addresses this problem. A series of biotinylated and dethiobiotinylated insulins has been prepared in which the distance between the biotin carboxyl group and the insulin varies from 7 to 20 atoms. These compounds form complexes with succinoylavidin. The dissociation rates (K-1) of these complexes have been determined from the [14C]biotin exchange assay. The dissociation kinetics of most of these complexes are biphasic, and the kinetic constants reported are those corresponding to the slow rate. Ligands containing dethiobiotin dissociate more rapidly than the corresponding biotin derivatives. The interposition of a spacer arm substantially decreases the rate of dissociation. The [14C]biotin exchange assay could not be used with streptavidin complexes of the above ligand since biotin dissociates more rapidly from streptavidin than from succinoylavidin. However, the relative dissociation rates of a series of ligands could be determined and were as follows: 6-(dethiobiotinylamido)-hexanoic acid greater than dethiobiotinyl-A1-insulin greater than biotinylinsulin greater than biotinyl-A1-insulin greater than biotinyl-A2-insulin. Dethiobiotin and its amide failed to form complexes with streptavidin. The affinity of the ligands for insulin receptors was determined by measuring their ability to stimulate 14CO2 formation from [1-14C]glucose in rat epididymal adipocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The synthesis of a series of octapeptides based on the somatostatin analog cyclo(-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Gaba-) containing the substitutions [Aap9], [D-Lys9], [L-Trp8, D-Lys9], [L-Orn9] and [D-aThr10] is reported. The analogs were designed and have been shown to inhibit proteolysis at the proposed (1) primary cleavage site between Lys9-Thr10 and thereby increase their stability to enzymic attack.  相似文献   

19.
通过化学半合成从天然猪胰岛素得到[B1-Ala,B2-Ala]胰岛素。这一胰岛素类似物经聚丙烯酰胺凝胶电泳和HPLC鉴定证明是均一的,氨基酸组成与理论值相符生物活性测定结果表明:[B1-Ala,B2-Ala]-胰岛素的体内活力与天然猪胰岛素相同,而与人胎盘细胞膜胰岛素受体的结合能力为天然猪胰岛素的132%。这一结果进一步说明胰岛素B链N端肽段参子与受体相互作用。此外,[B1-Ala,B2-Ala]-胰岛素的免疫活性很低,远小于天然猪胰岛素的4%。  相似文献   

20.
Substitution of A1-glycine of insulin by L-amino acids yields in analogues with low biological activity. With D-amino acids in A1 biological activity is essentially retained. Synthesis of [A1-L-tryptophan]- and [A1-D-tryptophan]-insulin should provide information about the position of the side chains of L- and D-amino acids relative to A19-tyrosine, e.g. by evaluation of intramolecular resonance energy transfer between the fluorescent side chains. [A1-D-Tryptophan]-insulin exhibits full biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号