首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In patients with cerebrotendinous xanthomatosis (CTX), diminished cholic acid production is associated with incomplete oxidation of the cholesterol side chain and the excretion of C(25)-hydroxy bile alcohols. The aims of this investigation were 1) to provide quantitative information on the pool size and production rate of chenodeoxycholic acid by the isotope dilution technique; and 2) to investigate the possible existence of a block in chenodeoxycholic acid synthesis and explain the absence of chenodeoxycholic acid precursors in CTX. After the injection of [24-(14)C]chenodeoxycholic acid, measurements of chenodeoxycholic acid pool size and production rate in a CTX subject were, respectively, 1/20 and 1/6 as great as controls. Further, three potential precursors of chenodeoxycholic acid, namely [G-(3)H]7alpha-hydroxy-4-cholesten-3-one, [G-(3)H]5beta-cholestane-3alpha,7alpha,25-triol, and [G-(3)H]5beta-cholestane-3alpha,7alpha,26-triol, were administered to the CTX and control subjects and the specific activity curves of [G-(3)H]cholic acid and [G-(3)H]chenodeoxycholic acid were constructed and compared. In the control subjects, the two bile acids decayed exponentially, but in the CTX patient maximum specific activities were abnormally delayed, indicating the hindered transformation of precursor into bile acid. These results show that chenodeoxycholic acid synthesis is small in CTX and that the conversion of 7alpha-hydroxy-4-cholesten-3-one, 5beta-cholestane-3alpha,7alpha,25-triol, and 5beta-cholestane-3alpha,7alpha,26-triol to both chenodeoxycholic acid and cholic acid were similarly impaired.  相似文献   

2.
The extent of oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in bile acids during the enterohepatic circulation in man was studied with the use of [3 beta-3H]-labeled deoxycholic acid and cholic acid, [7 beta-3H]-labeled cholic acid, and [12 beta-3H]-labeled deoxycholic acid and cholic acid. Each [3H]-labeled bile acid was given per os to healthy volunteers, together with the corresponding [24-14C]-labeled bile acid. The rate of oxidoreduction was calculated from the decrease in the ratio between 3H and 14C in the respective bile acid isolated from duodenal contents collected at different time intervals after administration of the labeled bile acids. The mean fractional conversion rate was found to be 0.29 day-1 for the 3 alpha-hydroxyl group in deoxycholic acid (n = 2), 0.18 day-1 for the 12 alpha-hydroxyl group in deoxycholic acid (n = 6), 0.09 day-1 for the 3 alpha-hydroxyl group in cholic acid (n = 3), 0.05 day-1 for the 7 alpha-hydroxyl group in cholic acid (n = 2), and 0.03 day-1 for the 12 alpha-hydroxyl group in cholic acid (n = 2). The extent of oxidoreduction of the 12 alpha-hydroxyl group in [12 beta-3H]-labeled deoxycholic acid given to two patients operated with subtotal colectomy and ileostomy was markedly reduced (less than 20% of normal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The gallbladder bile acid composition and the activity of the hepatic steroid 12 alpha-hydroxylase were determined in male and female hamsters. Cholic acid, chenodeoxycholic acid, and deoxycholic acid were the major bile acids in both sexes; in addition, 7-ketodeoxycholic acid and lithocholic acid were present. A sex-linked difference in the ratio of cholic acid (plus its metabolites) to chenodeoxycholic acid (plus its metabolite) was observed. The ratio was 1.93 +/- 0.39 in males and 2.74 +/- 0.54 in females. Another sex-linked difference was found in the activity of the 12 alpha-hydroxylase. The extent of the 12 alpha-hydroxylation of 7 alpha-hydroxycholest-4-en-3-one to yield 7 alpha, 12 alpha-dihydroxycholest-4-en-3-one was about two times greater in the microsomal suspension obtained from the liver of female hamsters than in that of male hamsters. A positive correlation between the 12 alpha-hydroxylase activity and the ratio of cholic acid/chenodeoxycholic acid was also observed. These results strongly support the proposal that the activity of the 12 alpha-hydroxylase is the major factor in determining the relative proportion of cholic acid and chenodeoxycholic acid formed from cholesterol in the liver.  相似文献   

4.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

5.
The plasma concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid have been compared with that of 7 alpha-hydroxy-4-cholesten-3-one in healthy subjects and in patients with an expected decrease or increase of the bile acid production. In controls and patients with liver disease, the level of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was positively correlated to that of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and not to that of 7 alpha-hydroxy-4-cholesten-3-one. In patients with stimulated bile acid formation the levels of the acids were not correlated to each other but there was a significant positive correlation between the levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid and 7 alpha-hydroxy-4-cholesten-3-one. These findings indicate that the precursor of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid differs depending on the activity of cholesterol 7 alpha-hydroxylase. Since the activity of this enzyme is reflected by the level of 7 alpha-hydroxy-4-cholesten-3-one in plasma the findings are compatible with a formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid from 3 beta,7 alpha-dihydroxy-5-cholestenoic acid when the rate of bile acid formation is normal or reduced and from 7 alpha-hydroxy-4-cholesten-3-one under conditions of increased bile acid synthesis. In support of this interpretation, 7 alpha,26-dihydroxy-4-cholesten-3-one was identified at elevated levels in plasma from patients with ileal resection or treated with cholestyramine. The levels of 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one were also higher than normal in these patients. Based on these findings and previous knowledge, a model is proposed for the biosynthesis of bile acids in man. Under normal conditions, two major pathways, one "neutral" and one "acidic" or "26-oxygenated", lead to the formation of cholic acid and chenodeoxycholic acid, respectively. These pathways are separately regulated. When the activity of cholesterol 7 alpha-hydroxylase is high, the "neutral" pathway is most important whereas the reverse is true when cholesterol 7 alpha-hydroxylase activity is low. In cases with enhanced activity of cholesterol 7 alpha-hydroxylase, the "neutral" pathway is connected to the "acidic" pathway via 7 alpha,26-dihydroxy-4-cholesten-3-one, whereas a flow from the acidic pathway to cholic acid appears to be of minor importance.  相似文献   

6.
12 alpha-Hydroxy-3-oxo-4-cholenoic acid coupled to an adenosine nucleotide has been shown to be a metabolite of cholic acid in the intestinal anaerobic bacteria, Eubacterium species VPI 12708 (1987. J. Biol. Chem. 262: 4701-4707) and it has been suggested that this may be an intermediate in the conversion of cholic acid into deoxycholic acid. The possibility that the intestinal conversion of cholic acid into deoxycholic acid involves a 3-oxo-delta 4-steroid as an intermediate has been studied in the present work by use of [3 beta-3H]- and [5-3H]-labeled cholic acid. Whole cells as well as cell extracts of Eubacterium sp. VPI 12708 catalyzed conversion of [3 beta-3H] + [24-14C]cholic acid into deoxycholic acid with loss of about 50% of 3H label. When unlabeled chenodeoxycholic acid (20 microM) was added along with [3 beta-3] + [24-14C]cholic acid, then approximately 85% of the [3 beta-3H]-labeled was lost from deoxycholic acid. After administration of the same mixture to two healthy volunteers, deoxycholic acid could be isolated that had lost 81 and 84%, respectively, of the 3H label. Conversion of a mixture of [5-3H]- and [24-14C]labeled cholic acid by the above intestinal bacteria or cell extracts led to loss of 79-94 of the [5-3H] label.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mechanism and sequence of side chain hydroxylation of cholesterol in bile acid synthesis was studied in the isolated perfused rabbit liver. A comparison was made between the importance of 26- and 25-hydroxylation in cholic acid biosynthesis in the rabbit. The formation of [G-3H]cholic acid was observed when the liver was perfused with 5beta-[G-3H]cholestane-3alpha, 7alpha-diol, 5beta-[G-3H]cholestane-3alpha, 7alpha-12alpha-triol, and 5beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol. No [G-3H]chenodeoxycholic acid was detected in the bile. These findings indicate that potential precursors of chenodeoxycholic acid were hydroxylated at position 12alpha either subsequent to or before hydroxylation of the cholesterol side chain. In addition, no other intermediates (tetrahydroxy or pentahydroxy bile alcohols) were found in the bile when these compounds were perfused in the liver. Bile acid precursors were detected in bile when the rabbit liver was perfused with 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol. The 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol was hydroxylated in the liver at the 12alpha position to yield the corresponding 5beta-cholestane-3alpha, 7alpha, 12alpha, 25-tetrol. The tetrol was further metabolized to a series of pentols (5beta-cholestane-3alpha, 7alpha, 12alpha, 22, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 23, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 24, 25-pentol; and 5beta-cholestane-3alpha, 7alpha, 12alpha, 25, 26-pentol). The major bile acid obtained from the perfusion of the 5beta-cholestane-3alpha, 7alpha, 25-triol was cholic acid. The experiments indicated that in the rabbit liver 12alpha-hydroxylation can occur after hydroxylation of the cholesterol side chain at either C-25 (5 beta-cholestane-3alpha, 7alpha, 25-triol) or C-26 (5beta-cholestane-3alpha, 7alpha-26-triol). Apparently, the rabbit can form cholic acid via the classical 26-hydroxylation pathway as well as via 25-hydroxylated intermediates.  相似文献   

8.
C A Sherman  R F Hanson 《Steroids》1976,27(2):145-153
The two primary bile acids, cholic acid (3α,7α,12α-tri-hydroxy-5β-cholan-24-oic acid) and chenodeoxycholic acid (3α,7α-dihydroxy-5β-cholan-24-oic acid), are initially synthesized by way of identical precursors, and the point of divergence of this pathway is thought to occur at the intermediate 7α-hydroxy-4-cholesten-3-one. In order to test this hypothesis, bile fistula rats received simultaneous intra-venous infusions of 3H-7α-hydroxy-4-cholesten-3-one and 14C-cholesterol (5-cholesten-3β-ol). Assays of equal specific activities of the two bile acids from an infusion of 14C-cholesterol demonstrated the achievement of a steady state, and assays of equal specific activities from an infusion of 3H-7α-hydroxy-4-cholesten-3-one would-validate the above postulate. However, the infusion of 3H-7α-hydroxy-4-cholesten-3-one resulted in unequal specific activities in the bile acids of the rats investigated, with cholic acid always of a lower value. These results suggest that either 7α-hydroxy-4-cholesten-3-one is not the last common intermediate in the production of cholic acid and chenodeoxycholic acid, or that the infused bile acid intermediate was not metabolized in a fashion similar to that formed in the liver from cholesterol.  相似文献   

9.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

10.
Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved. Experiments with isolated perfused liver gave direct evidence that the overall conversion of sitosterol into C21 bile acids occurs in this organ. Intravenously injected 7 alpha,7 beta-3H-labeled campesterol gave a product pattern identical to that of 4-14C-labeled sitosterol. Possible mechanisms for hepatic conversion of sitosterol and campesterol into C21 bile acids are discussed.  相似文献   

11.
Apparent lack of conversion of sitosterol into C24-bile acids in humans   总被引:1,自引:0,他引:1  
The metabolic fate of intravenously administered [4-14C]sitosterol was studied in two healthy subjects. In marked contrast to the results of a previous investigation with [22,23-3H]sitosterol, no detectable labeled C24-bile acid products appeared in bile. The first and rate-limiting step in the conversion of cholesterol into bile acids is catalyzed by the liver microsomal cholesterol 7 alpha-hydroxylase. When incubated with human liver microsomes, no detectable 7 alpha-hydroxylation of sitosterol could be demonstrated. This was the case also when using liver microsomes from two subjects treated with cholestyramine, in which case the rate of 7 alpha-hydroxylation of cholesterol was increased three- to sixfold. In order to bypass the rate-limiting step, the metabolic fate of 3H-labeled 7 alpha-hydroxysitosterol was studied in two volunteers. In this case there was a significant conversion into acid products in bile (18-32% excreted in bile during the first 17 h). Although part of the labeled products had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid, further analysis showed that none of the products was identical to chenodeoxycholic acid and only traces at the most could be identical to cholic acid. The results suggest that healthy human subjects, in similarity with other mammalian species studied, have little or no capacity to convert sitosterol into the normal C24-bile acids.  相似文献   

12.
Biliary 7 alpha-hydroxy-4-cholesten-3-one (an intermediate in bile acid biosynthesis) may be 7 alpha-dehydroxylated in the gut and further metabolized to cholestanol (Skrede, S., and Bj?rkhem, I. (1982) J. Biol. Chem. 257, 8363-8367). We have now evaluated the quantitative importance of pathway(s) to cholestanol with 7 alpha-hydroxylated C27 steroids as intermediates. After feeding conventionally fed rabbits or rats or germ-free rats with [7 alpha-3H]cholesterol and [4-14C]cholesterol, tissue cholestanol could be isolated with about a 20% lower 3H/14C ratio than present in cholesterol. We conclude that there is a pathway to cholestanol involving 7 alpha-hydroxylated intermediates. Intestinal microorganisms are not essential for this pathway, which accounts for at most 20% of the cholestanol formed in these species. In bile fistula rats, there was also a significant conversion of intraperitoneally injected [7 beta-3H]7 alpha-hydroxycholesterol and [4-14C]7 alpha-hydroxy-4-cholesten-3-one into cholestanol. The enzymes involved in the 7 alpha-hydroxylation/dehydroxylation pathway for the biosynthesis of cholestanol are probably located in the liver. Both 7 alpha-hydroxycholesterol and 7 alpha-hydroxy-4-cholesten-3-one may be intermediates.  相似文献   

13.
The effect of dietary 7 beta-methyl-cholic acid [0.075% in rodent chow (6.4 mg/animal per day)] on cholesterol and bile acid metabolism was studied and compared with that of cholic acid in the hamster. Following oral administration of 7 beta-methyl-cholic acid for 3 weeks, the glycine-conjugated bile acid analog became a major constituent of gallbladder bile. Biliary cholic acid concentration decreased significantly, while that of chenodeoxycholic acid remained unchanged. Serum and liver cholesterol levels were increased by dietary 7 beta-methyl-cholic acid and by cholic acid. Hepatic microsomal HMG-CoA reductase activity was inhibited (30% of the control value) by both bile acids; cholesterol 7 alpha-hydroxylase activity was not affected. In chow controls and cholic acid-fed animals, bacterial 7-dehydroxylation of [14C]chenodeoxycholic acid and [14C]cholic acid was nearly complete. In contrast, dietary 7 beta-methyl-cholic acid effectively prevented the 7-dehydroxylation of the two primary bile acids. These results show that dietary 7 beta-methyl-cholic acid is preserved in the enterohepatic circulation and has an effect on serum and liver cholesterol concentrations similar to those produced by the naturally occurring cholic acid. 7 beta-Methyl-cholic acid is an efficient inhibitor of the bacterial 7-dehydroxylation of the primary bile acids in the hamster.  相似文献   

14.
The conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-[3H]cholestanoic acid into cholic acid and 3 alpha,7 alpha-dihydroxy-5 beta-[3H]cholestanoic acid into chenodeoxycholic acid has been studied in subcellular fractions of human liver. The products were separated from the substrates by high-pressure liquid chromatography and identified by combined gas chromatography-mass spectrometry. The highest rates of conversion were found in the light mitochondrial fraction. This fraction also contained the highest amount of the marker enzymes for peroxisomes. The maximal rates of cholic acid and chenodeoxycholic acid formation were 1.3 and 1.8 nmol/mg protein per h, respectively. The presence of KCN in the incubation medium stimulated the formation of bile acids. Peroxisomes were prepared from the light mitochondrial fraction by sucrose-gradient centrifugation. By use of different marker enzymes, it was confirmed that the major part of the activity for cholic acid formation in the light mitochondrial fraction was located in the peroxisomes. It is concluded that liver peroxisomes are important for the oxidative cleavage of the C27 steroid side chain in bile acid formation in man.  相似文献   

15.
We attempted to quantitate production of bile acid via the 27-hydroxylation pathway in six human subjects. After bolus intravenous injection of known amounts of [24-14C]cholic acid and [24-14C]chenodeoxycholic acid, each subject underwent a constant intravenous infusion of a mixture of [22, 23-3H]-27-hydroxycholesterol and [2H]-27-hydroxycholesterol for 6;-10 h. Production rate of 27-hydroxycholesterol was calculated from the infusion rate of [2H]-27-hydroxycholesterol and the serum ratio of deuterated/protium 27-hydroxycholesterol, which reached a plateau level by 4 h of infusion. Conversion of 27-hydroxycholesterol to cholic and chenodeoxycholic acids was determined from the 3H/14C ratio of these two bile acids in bile samples obtained the day after infusion. In five of the six subjects, independent measurement of bile acid synthesis by fecal acidic sterol output was available from previous studies. Endogenous production of 27-hydroxycholesterol averaged 17.6 mg/day and ranged from 5.0 to 28.2 mg/day, which amounted to 8.7% (range 3.0;-17.9%) of total bile acid synthesis. On average 66% of infused 27-hydroxycholesterol was converted to bile acid, of which 72.6% was chenodeoxycholic acid.These data suggest that relatively little bile acid synthesis takes place via the 27-hydroxylation pathway in healthy humans. Nevertheless, even this amount, occurring predominantly in vascular endothelium and macrophages, could represent an important means for removal of cholesterol deposited in endothelium.  相似文献   

16.
1. The liver microsomal metabolism of [4-14C]cholesterol, endogenous cholesterol, 7 alpha-hydroxy-4-[6 beta-3H]cholesten-3-one, 5-beta-[7 beta-3H]cholestane-3 alpha, 7 alpha-diol and [3H]lithocholic acid was studdied in control and clofibrate (ethyl p-chlorophenoxyisobutyrate)-treated rats. 2. The extent of 7 alpha-hydroxylation of exogenous [414C]cholesterol and endogenous cholesterol, the latter determined with a mass fragmentographic technique, was the same in the two groups of rats. The extent of 12 alpha-hydroxylation of 7 alpha-hydroxy-4-cholesten-3-one and 5 beta-cholestane-3 alpha, 7 alpha-diol was increased by about 60 and 120% respectively by clofibrate treatment. The 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol was not significantly affected by clofibrate. The 6 beta-hydroxylation of lithocholic acid was about 80% higher in the clofibrate-treated animals than in the controls. 3. The results are discussed in the context of present knowledge about the liver microsomal hydroxylating system and bile acid formation in patients with hypercholesterolaemia, treated with clofibrate.  相似文献   

17.
1. The metabolism of 4-[4-14C]androstene-3,17-dione, 4-[4-14C]pregnene-3,20-dione, 5alpha-[4-14C]androstane-3alpha,17beta-diol, [4-14C]cholesterol, 7alpha-hydroxy-4-[6beta-3H]cholesten-3-one, 5beta-[7beta-3H]cholestane-3alpha,7alpha-diol and [3H]lithocholic acid was studied in the microsomal fraction of livers from control and orotic acid-treated male rats. 2. As a result of the treatment the orotic acid-fed rats had fatty livers and subnormal concentrations of cholesterol and triglycerides in serum. 3. The 6beta- and 7alpha-hydroxylation of 4-androstene3,17-dione, and the 2alpha-, 2beta- and 18-hydroxylation of 5alpha-androstane-3alpha,17beta-diol, and the 5alpha-reduction of 4-androstene-3,17-dione and 4-pregnene-3,20-dione were decreased by 40--50% in orotic acid-fed rats. Other oxidative and reductive reactions of the steroid hormones were not significantly affected. 4. The 12alpha-hydroxylation of 7alpha-hydroxy-4-cholesten-3-one was decreased by about 50%, whereas the 7alpha-hydroxylation of cholesterol and the 26-hydroxylation of 5beta-cholestane-3alpha,7alpha-diol were not significantly decreased. The 6beta-hydroxylation of lithocholic acid was stimulated by 40%. 5. The results are discussed in relation to present knowledge of the heapatic drug-metabolizing enzymes and to the recent findings of an abnormal bile acid metabolism in liver disease.  相似文献   

18.
The aim of this study was to explore the regulation of serum cholic acid (CA)/chenodeoxycholic acid (CDCA) ratio in cholestatic hamster induced by ligation of the common bile duct for 48 h. The serum concentration of total bile acids and CA/CDCA ratio were significantly elevated, and the serum proportion of unconjugated bile acids to total bile acids was reduced in the cholestatic hamster similar to that in patients with obstructive jaundice. The hepatic CA/CDCA ratio increased from 3.6 to 11.0 (P<0.05) along with a 2.9-fold elevation in CA concentration (P<0.05) while the CDCA level remained unchanged. The hepatic mRNA and protein level as well as microsomal activity of the cholesterol 7alpha-hydroxylase, 7alpha-hydroxy-4-cholesten-3-one 12alpha-hydroxylase and 5beta-cholestane-3alpha,7alpha,12alpha-triol 25-hydroxylase were not significantly affected in cholestatic hamsters. In contrast, the mitochondrial activity and enzyme mass of the sterol 27-hydroxylase were significantly reduced, while its mRNA levels remained normal in bile duct-ligated hamster. In conclusion, bile acid biosynthetic pathway via mitochondrial sterol 27-hydroxylase was preferentially inhibited in bile duct-ligated hamsters. The suppression of CYP27A1 is, at least in part, responsible for the relative decreased production of CDCA and increased CA/CDCA ratio in the liver, bile and serum of cholestatic hamsters.  相似文献   

19.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

20.
There is considerable evidence suggesting that compartmentalized functional pools of cholesterol in the liver contribute differently to the formation of bile acids as the precursor. The present paper deals with the incorporation of [1-14C]acetate and of [1,2-3H]cholesterol carried on lipoproteins (LDL and HDL) into biliary bile acids in perfused rat livers and bile-fistula rats. The results showed that endogenous cholesterol synthesized newly from [1-14C]acetate in the liver was incorporated into both cholic acid and chenodeoxycholic acid in a similar way, while exogenous lipoprotein-[1,2-3H]cholesterol delivered to hepatocytes from hepatic circulation was incorporated into chenodeoxycholic acid at a higher rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号