首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The annual replacement of tillers of Agropyron desertorum (Fisch. ex Link) Schult., a grazing-tolerant, Eurasian tussock grass, was examined in the field following cattle grazing. Heavy grazing before internode (culm) elongation seldom affected tiller replacement. Heavy grazing during or after internode elongation, which elevates apical meristems, increased overwinter mortality of fall-produced tillers and reduced the number and heights of these replacement tillers. Unexpectedly, tussocks grazed twice within the spring growing season tended to have lower overwinter tiller mortality, greater tiller replacement, and larger replacement tillers than tussocks grazed only once in late spring. These responses of twice-grazed tussocks, however, were still less than those of ungrazed tussocks or tussocks grazed moderately in early spring. The presence of ungrazed tillers on partially grazed tussoks did not increase the replacement of associated grazed tillers relative to tillers on uniformly grazed plants. This result indicates that resource sharing among tillers, if present, is short-lived or ecologically unimportant in this species. Although A. desertorum is considered grazing-tolerant, tiller replacement on heavily grazed tussocks, particularly those grazed during or after internode elongation when apical meristems were removed, was usually inadequate for tussock maintenance. These observations at the tiller (ramet) level of organization in individual tussocks (genet) may explain the often noted reduction in stand (population) longevity with consistent heavy grazing.  相似文献   

2.
Competition for light can affect exploitation of spatially heterogeneous soil resources. To evaluate the influence of shoot status on root growth responses in nutrient-rich soil patches, we studied the effects of shading and whole-plant nitrogen status on root growth in N-enriched and nonenriched patches by mature Agropyron desertorum plants growing in the field with below-ground competition. Roots in enriched patches had greater length to weight ratios (specific root length, SRL), indicating increased absorptive surface areas, compared with roots in control patches. Increased SRL was due to increased production and length of higher order laterals rather than morphological changes in roots of the same branching order. Although the pattern of root growth rates in patches was the same for shaded and unshaded plants, the magnitude of this response to enriched patches was damped by shading. Root relative growth rates (RGR) in N-enriched patches were reduced by more than 50% by short-term shading treatments (60% reduction in photosynthetic flux density), while root RGR in unenriched patches was unaffected by shading. Unexpectedly, plants with higher nitrogen status had greater root RGR in enriched patches than plants that had not received nitrogen supplement, again with no detectable effect on root RGR in the unenriched patches. Therefore, while both shading and plant N status affected the ability of roots to exploit enriched patches by proliferation, there was no stimulation or suppression of root growth in the unenriched, control patches. Thus, plants already under competitive pressure above ground for light and below ground for nutrients should be less able to rapidly respond to opportunities presented in nutrient patches and pulses.  相似文献   

3.
David A. Pyke 《Oecologia》1990,82(4):537-543
Summary Demographic characteristics associated with the maintenance and growth of populations, such as seed dynamics, seedling emergence, survival, and tiller dynamics were examined for two tussock grasses, the native Agropyron spicatum and the introduced Agropyron desertorum in a 30-month field study. The introduced grass was aerially sown onto a native grassland site. Seed production of the introduced grass was greater than the native grass in both above- and below-average precipitation years. Seeds of A. spicatum were dispersed when they mature, while A. desertorum retained some seeds in inflorescences, and dispersed them slowly throughout the year. This seed retention allowed some seeds of the introduced grass to escape peak periods of seed predation during the summer and allowed seeds to be deposited constantly into the seed bank. Carryover of seeds in the seed bank beyond one year occurred in the introduced grass but not in the native species. For both species, seedling emergence occurred in both autumn or spring. Survival rates for A. desertorum were higher than A. spicatum when seedlings emerged between November and March. Survival rates of cohorts emerging before November favored A. spicatum whereas survival rates did not differ between species for cohorts emerging after March. Individuals of both species emerging after April were unable to survive the summer drought. Demographic factors associated with seeds of A. desertorum seemed to favor the maintenance and spread of this introduced grass into native stands formerly dominated by A. spicatum.  相似文献   

4.
Although the tussock growth form of caespitose graminoids is widespread, the effect of this growth form on light interception and carbon gain of tillers has received little attention. Daily incident photosynthetic photon flux density (PFDinc) and carbon gain in monospecific stands of tussock grasses were compared with those of a hypothetical distribution with the equivalent tiller density per total ground area, but evenly distributed rather than clumped in tussocks. This was computed for two tussock grasses Pseudoroegneria spicata (Pursh) A. Löve (bluebunch wheatgrass) and Agropyron desertorum (Fisch, ex Link) Schult. (creasted wheatgrass) at different plant densities. Daily PFDinc and net photosynthesis (A) were greater if tillers were distributed uniformly rather than clumped in tussocks, except when the density of tussocks was so great as to approach a uniform canopy. When tussock density per ground area was low, much of the difference between tussock and uniform tiller densities in PFDinc and A was due to shading within the tussocks; up to 50–60% of the potential carbon gain was lost in A. desertorum due to shading within tussocks. In a matrix of tussocks, the light field for establishing seedlings was very heterogeneous; potential A ranged from 7 to 96% relative to an isolated seedling. The mean of daily PFDinc and A for seedlings in a tussock stand were nearly identical to the values in corresponding stands of uniform tiller distributions. It is hypothesized that the loss of A resulting from clumping tillers into tussocks is offset by benefits of protecting sequestered belowground resources from invasion by seedlings of competitors.  相似文献   

5.
Abstract. Question: What are the grazing effects in the spatial organization and the internal structure of high and low cover patches from a two‐phase vegetation mosaic? Location: Patagonian steppe, Argentina. Methods: We mapped vegetation under three different grazing conditions: ungrazed, lightly grazed and heavily grazed. We analysed the spatial patterns of the dominant life forms. Also, in each patch type, we determined density, species composition, richness, diversity, size structure and dead biomass of grasses under different grazing conditions. Results: The vegetation was spatially organized in a two‐phase mosaic. High cover patches resulted from the association of grasses and shrubs and low cover patches were represented by scattered tussock grasses on bare ground. This spatial organization was not affected by grazing, but heavy grazing changed the grass species involved in high cover patches and reduced the density and cover of grasses in both patch types. Species richness and diversity in high cover patches decreased under grazing conditions, whereas in low cover patches it remained unchanged. Also, the decrease of palatable grasses was steeper in high cover patches than in low cover patches under grazing conditions. Conclusions: We suggest that although grazing promotes or inhibits particular species, it does not modify the mosaic structure of Patagonian steppe. The fact that the mosaic remained unchanged after 100 years of grazing suggests that grazing does not compromize population processes involved in maintaining patch structure, including seed dispersal, establishment or biotic interactions among life forms.  相似文献   

6.
Summary Growth and carbon allocation of a cool season tussock grass, Agropyron desertorum, following defoliation of newly initiated tillers in the autumn of 1988 and 1989 were investigated. Tiller density and mortality, reproductive shoot density, root density, biomass, individual tiller weight, carbon allocation, and soil water depletion were used to evaluate the response of A. desertorum to autumn grazing. Tiller recruitment was lower in the autumn-defoliated treatment in both years compared with the control because of the cessation of tiller development following autumn defoliation. Autumn defoliation also significantly reduced the movement of 13C to the roots in 1988 but not in 1989. Soils were cooler and drier in 1989. Other plant growth measurements and soil water depletion rates were not different between treatments. Autumn defoliation in 1988 did not influence tiller recruitment in the following autumn. Two consecutive years of autumn defoliation did not affect tiller overwinter mortality or peak standing crop in 1990.  相似文献   

7.
Summary The alcohol dehydrogenase (ADH), phosphoglucose mutase (PGM), glucosephosphate isomerase (GPI), glutamic oxaloacetic transaminase (GOT), malate dehydrogenase (MDH), leaf esterases (ESTL), leaf acid (ACPH) and endosperm alkaline (PHE) phosphatases, leaf peroxidases (PERL) zymogram phenotypes of Triticum aestivum, Agropyron intermedium, Triticum aestivumAgropyron intermedium octoploids and six Agropyron intermedium chromosome additions to Triticum aestivum and two ditelocentric addition lines were determined. It was found that the six disomic chromosome addition lines and one ditelocentric chromosome addition line could be distinguished from one another and from the other possible lines on the basis of the zymogram phenotypes of these isozymes. The structural gene Acph-X1 was located on Agropyron chromosome L1, the genes Got-X3 and Mdh-X2 on chromosome L2, the gene Gpi-X1 on chromosome L3, the genes Adh-X1, Pgm-X1 and Phe-3 on chromosome L4, gene Perl-1 on chromosome L5 and the gene Estl-2 on chromosome L7 and chromosome arm L7d2. These gene locations provide evidence of homoeology between Agropyron chromosomes L1, L2, L3, L4, L5 and L7 and the Triticum aestivum chromosomes of homoeologous groups 7, 3, 1, 4, 2 and 6, respectively.  相似文献   

8.
Summary Intergeneric hybrids between Triticum aestivum cv Chinese Spring (2n=6x=42, AABBDD) and Agropyron michnoi Roshev. (2n=4x=28, PPPP) were obtained by embryo culture. Their spike characteristics were similar to those of common wheat but, unlike their parents, they were long-awned. The average meiotic chromosome pairing at MI of F1 hybrids was: 6.39 I +3.75 rodII+8.64 ringII+0.81 III+0.30 IV+0.04 V, the bivalent and multivalent formation of which was much higher than expected from the genomic formulae. It is especially worthwhile to note that the F1 hybrids were self-fertile, self set being 0.15%, and seeds were easily obtained from the backcross of f1 plants with hexaploid and tetraploid wheats; here the seed set was more than 20.0%. The polyploid taxa and the position of A. Michnoi in Agropyron are discussed.  相似文献   

9.
A cattle population presents three spatial patterns according to their behaviour. These patterns are as follows: the random spatial pattern which occurs when the cattle move during grazing (feeding), the aggregated spatial pattern which occurs when they rest, and the regular or quasi-regular spatial pattern which occurs when they separate into two or more subgroups. In this study, these three states of behaviour were represented by a mathematical model, and a method to test the pattern statistically was derived.  相似文献   

10.
Most of North America’s northern Great Plains have been cultivated for crop production, leaving remnants of natural mixed-grass prairie fragmented and threatened by alien plant invasions. The region’s most widespread alien perennial forage crop, crested wheatgrass (Agropyron cristatum sensu amplo), has invaded native grassland and raised concerns regarding its ecological impact. To evaluate impacts at multiple scales of organization, adjacent invaded and uninvaded mixed-grass prairie were sampled at eight widely separated locations. At the population level, native C3 mid-grasses and forbs were less abundant in invaded grasslands, while native C3 and C4 short-grass abundance was not different. At community and landscape levels, diversity was lower in invaded grasslands largely because of lower forb species richness and cover, and crested wheatgrass dominance of both cover (14% basal cover) and seedbank (404 seeds m−2). At the ecosystem level, both vegetation and litter biomass were greater in invaded grasslands, however, below ground organic matter (roots and litter), soil organic carbon, total nitrogen and phosphorus were not different. Crested wheatgrass invasion of mixed-grass prairie was associated with lower diversity within and among plant communities, and appears to simplify the composition of mixed-grass prairie landscapes. Hypotheses for crested wheatgrass dominance and persistence following invasion are suggested.  相似文献   

11.
Y. Waisel 《Oecologia》1987,73(4):630-632
Summary Wild wheats tend to have a prostrate growthform during the early part of their vegetative growth phase. However, at a later stage the leaves and spike-bearing stalks change the pattern of growth and develop in an erect position. Domesticated wheats develop differently, with an erect growth form dominating the entire growth phase.It is suggested that heavy grazing, especially during early winter months might have played a role in the eradication of spontaneously appearing erect mutants of wild wheat. Such mutants increased in frequency only under domestication.  相似文献   

12.
Seeding selected populations with high grazing resistance may foster recovery of plant populations threatened by overgrazing. Resistance to grazing depends on grazing avoidance (escape from grazers) and grazing tolerance (ability to growth after defoliation). Many studies of grazing tolerance defoliate plants at a fixed height instead of removing the same proportion of biomass and therefore confound tolerance with avoidance. For this reason, the information on evolution of tolerance to defoliation at the intraspecific level is remarkably scarce despite the abundance of papers published that evaluate responses to defoliation. The estimation of the cost of tolerance is also troublesome because current methods usually include spurious correlations due to correlation between variables that share common terms. The objectives of this paper were to assess the intraspecific variation in tolerance and in traits associated with avoidance and growth in populations with different sheep grazing histories. We also estimated the percentage of biomass removed when the defoliation treatment was imposed at fixed height in order to separate tolerance and avoidance. Finally, we estimated the cost of tolerance using a new method proposed for spurious correlations. Results of a greenhouse experiment indicated no difference in tolerance among the three compared populations. However, the populations from overgrazed fields had more prostrate growth form, higher specific leaf area, and higher tillering rate (when no defoliated) than populations from exclosures. We confirmed that fixed height defoliation would have removed a higher proportion of shoot biomass from taller than from shorter individual plants, confounding grazing tolerance and avoidance. Regarding the cost of tolerance, we found no differences from a null model of no cost, indicating that the evolution (or future breeding) of more tolerant genotypes would not be constrained by this cost.  相似文献   

13.
Summary Previous studies have shown that plant carbon isotope composition varies when plants experience differences in water and nutrient availability. However, none have addressed the effect of root interactions, including competition for these soil resources, on carbon isotope ratios. We studied the effect of interspecific root interactions on the productivity and carbon isotope ratios of two Great Basin tussock grass species (Agropyron desertorum and Pseudoroegneria spicata). We compared grasses grown in mixture with sagebrush (Artemisia tridentara) to grasses in similar mixtures but where root interactions with sagebrush were limited by fiberglass partitions. During both years of the study, tussocks growing in competition with sagebrush produced tissue with more negative 13C values than grasses experiencing limited root interaction with sagebrush. The magnitude of this difference (0.5 to 0.9%) is similar to that found in other studies when soil fertility and moisture availability were altered.  相似文献   

14.
Summary Three lines derived from wheat (6x) x Agropyron elongatum (10x) that are resistant to wheat streak mosaic virus (WSMV) were analyzed by chromosome pairing, banding, and in situ hybridization. Line CI15321 was identified as a disomic substitution line where wheat chromosome 1D is replaced by Ag. elongatum chromosome 1Ae-1. Line 87-94-1 is a wheat-Ag. elongatum ditelosomic addition 1Ae-1L. Line CI15322 contains an Ag. elongatum chromosome, 1Ae-2, that substitutes for chromosome 1D. The short arm of 1Ae-2 paired with the short arm of 1Ae-1 at metaphase I (MI) in 82% of the pollen mother cells (PMCs). However, the long arms of these two chromosomes did not pair with each other. In CI15322, the long arm of chromosome 4D has an Agropyron chromosome segment which was derived from the distal part of 1Ae-1L. This translocation chromosome is designated as T4DS·4DL-1L. T4DS·4DL-1Ae-1L has a 0.73 m distal part of the long arm of 4D replaced by a 1.31 m distal segment from 1Ae-1L. The major WSMV resistance gene(s) in these lines is located on the distal part of 1Ae-1L.Contribution No. 92-599-J from the Kansas Agricutural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

15.
2019年4-11月,在四川省若尔盖县选取全年禁牧、冬季放牧、全年放牧3种放牧模式样地,对高原鼠兔(Ochotona curzoniae)洞口的数量、空间分布格局变化及影响因子进行了研究.计算平均最近邻指数和S2/m比值来分析样方(10m×10m)和样地水平下的空间分布格局,通过非参数检验评估空间分布格局在不同放牧模式...  相似文献   

16.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

17.
To study the usefulness of low-molecular-weight glutenin subunits (LMW-GS) of Agropyron elongatum (Host) Nevski to wheat (Triticum aestivum L.) quality improvement, we characterized LMW-GS genes of A. elongatum. Nine LMW-GS genes of A. elongatum, which were named AeL1 to AeL9, were cloned by genomic PCR. After sequencing, we obtained complete open reading frames from AeL2 to AeL8 and partial genes of AeL1 and AeL9. All nine sequences are homoeologous to those of wheat and related grasses. Comparison of the deduced amino acid sequences with those of published LMW-GS suggests that the basic structures of all the subunits are very similar. However, except for AeL4 and AeL5, which contain the identical N-terminal sequence with LMW-m, other LMW-GS sequences separated from A. elongatum cannot be classified according to previous criteria for the three types: LMW-m (methionine), LMW-s (serine), and LMW-i (isoleucine), and then 12 groups. In addition, there are some characters in the LMW-GS sequences of A. elongatum: AeL2, AeL3, and AeL6 involve a Cys residue in the signal peptide respectively, which is absent in most of LMW-GS; AeL3, AeL6, AeL8, and AeL9 start their first Cys residues in the N-terminal repetitive domains, respectively; both AeL2 and AeL5 have nine Cys residues, with an extra Cys residue in the N-terminal repetitive domain and the repetitive and glutamine-rich domain; AeL2, AeL3, AeL6, and AeL9 comprise long repetitive domains. Phylogenetic analysis indicates that there is a relatively weak sequence identity between the LMW-GS genes from A. elongatum cloned in this study and those reported from other plants. Three LMW-GS sequences, AeL2, AeL3, and AeL6, are clustered to Glu-A3 from wheat than to those from other plants. The possible use of these genes in relation to the high quality of hybrid wheat is discussed.  相似文献   

18.
Summary The nucleolar organizer activity of the Agropyron elongatum, its amphiploid with hexaploid wheat (Triticum aestivum) and the chromosome addition lines is analyzed by the silver-staining procedure. Four Ag-NORs are observed in A. elongatum corresponding to the chromosomes 6E and 7E. In the amphiploid T. aestivum — A. elongatum, eight Ag-NORs are observed which corresponds the wheat chromosomes 1B and 6B and to the elongatum chromosomes 6E and 7E. Thus, there is codominance in the nucleolar organizer activity of the chromosomes of the two species. However, a partial amphiplasty is detected since less than 8 Ag-NORs (7 up to 4) are observed in some metaphase cells; the chromosomes 6E and 7E are occasionally suppressed by wheat chromosomes. This conclusion is confirmed by the behaviour of the addition lines since only in those corresponding to the chromosomes 6E and 7E are the elongatum chromosomes nucleolar active although occasionally they can be suppressed by wheat chromosomes.  相似文献   

19.
Summary Morphologically distinct populations of a North American perennial grass, Agropyron smithii, collected from a heavily grazed prairie dog (Cynomys ludovicianus) colony (PDC) and a grazing exclosure (EX), were grown in an environmental chamber to determine whether: (1) leaf silicon (Si) concentrations are greater in plant populations which differentiated under heavy grazing pressure, and (2) leaf silicification is inducible by defoliation. Mean shoot Si concentration of nondefoliated plants was greater in the PDC population (2.2%) than the EX population (1.9%) over the 18 wk experiment, largely as a result of differences in Si concentrations in leaf blades. However, leaf Si concentration was lower in defoliated plants of each population than in nondefoliated plants, indicating that leaf silicification was not an inducible herbivore defense mechanism in A. smithii. The higher leaf Si concentrations from the heavily grazed population may be associated with grazingrelated environmental stresses such as a warmer, drier microclimate or with morphological characteristics related to grazing tolerance or avoidance.  相似文献   

20.
Reichwaldt ES  Wolf ID  Stibor H 《Oecologia》2004,141(3):411-419
Diel vertical migration (DVM) of herbivorous zooplankton is a widespread behavioural phenomenon in freshwater ecosystems. So far only little attention has been paid to the impact of DVM on the phytoplankton community in the epilimnion. Some theoretical models predict that algal population growth in the epilimnion should depend on the herbivores migration and grazing patterns: even if migrating zooplankton consume the same total amount of algae per day in the epilimnion as non-migrating zooplankton, nocturnal grazing should result in enhanced algal growth and favour algal species with high intrinsic growth rates over species with lower intrinsic growth rates. To test these hypotheses we performed experiments in which several algal species were confronted with different feeding regimes of Daphnia. In the experiments algal growth did not only depend on the absolute time of grazing but was comparatively higher when grazing took place only during the night, even when the grazing pressure was the same. Furthermore, algal species with higher intrinsic growth rates had higher advantages when being grazed upon only discontinuously during the night than algal species with a smaller intrinsic growth rate. The grazing pattern itself was an important factor for relative algal performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号