首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamin is a GTPase protein that is essential for clathrin-mediated endocytosis of synaptic vesicle membranes. The Drosophila dynamin mutation shi(ts1) changes a single residue (G273D) at the boundary of the GTPase domain. In cell fractionation of homogenized fly heads without monovalent cations, all dynamin was in pellet fractions and was minimally susceptible to Triton-X extraction. Addition of Na(+) or K(+) can extract dynamin to the cytosolic (supernatant) fraction. The shi(ts1) mutation reduced the sensitivity of dynamin to salt extraction compared with other temperature-sensitive alleles or wild type. Sensitivity to salt extraction in shi(ts1) was enhanced by GTP and nonhydrolyzable GTP-gammaS. The shi(ts1) mutation may therefore induce a conformational change, involving the GTP binding site, that affects dynamin aggregation. Temperature-sensitive shibire mutations are known to arrest endocytosis at restrictive temperatures, with concomitant accumulation of presynaptic collared pits. Consistent with an effect upon dynamin aggregation, intact shi(ts1) flies recovered much more slowly from heat-induced paralysis than did other temperature-sensitive shibire mutants. Moreover, a genetic mutation that lowers GTP abundance (awd(msf15)), which reduces the paralytic temperature threshold of other temperature-sensitive shibire mutations that lie closer to consensus GTPase motifs, did not reduce the paralytic threshold of shi(ts1). Taken together, the results may link the GTPase domain to conformational shifts that influence aggregation in vitro and endocytosis in vivo, and provide an unexpected point of entry to link the biophysical properties of dynamin to physiological processes at synapses.  相似文献   

2.
Nucleoside diphosphate kinase (NDK), an enzyme encoded by the Drosophila abnormal wing discs (awd) or human nm23 tumor suppressor genes, generates nucleoside triphosphates from respective diphosphates. We demonstrate that NDK regulates synaptic vesicle internalization at the stage where function of the dynamin GTPase is required. awd mutations lower the temperature at which behavioral paralysis, synaptic failure, and blocked membrane internalization occur at dynamin-deficient, shi(ts), mutant nerve terminals. Hypomorphic awd alleles display shi(ts)-like defects. NDK is present at synapses and its enzymatic activity is essential for normal presynaptic function. We suggest a model in which dynamin activity in nerve terminals is highly dependent on NDK-mediated supply of GTP. This connection between NDK and membrane internalization further strengthens an emerging hypothesis that endocytosis, probably of activated growth factor receptors, is an important tumor suppressor activity in vivo.  相似文献   

3.
Stress-sensitive mutants in Drosophila have been shown to exhibit activity-dependent defects in neurotransmission. Using the neuromuscular junction (NMJ), this study investigates synaptic function more specifically in two stress-sensitive mutants: stress-sensitive B (sesB), which encodes a mitochondrial ADP/ATP translocase (ANT); and Atpalpha(2206), a conditional mutant of the Na+/K+ ATPase alpha-subunit. Mechanical shock induces a period of brief paralysis in both homozygous and double heterozygous mutants, but further analysis revealed distinct activity-dependent neurotransmission lesions in each mutant. Basal neurotransmission appeared similar to wild-type controls in both mutants under low frequency stimulation. High frequency stimulation, however, caused pronounced synaptic fatigue as well as slow and incomplete synaptic recovery in sesB mutants while Atpalpha(2206) mutants displayed an increase (25-fold) in synaptic failures. Perhaps to compensate for these activity dependent defects, the neuromuscular synapse was found to be overgrown in both mutants. Passive electrotonic stimulation, which initiates synaptic transmission independent of action potentials, ameliorated synaptic failures and resulted in increased neurotransmission amplitude in Atpalpha(2206) mutants. In addition, spontaneous synaptic vesicle fusion rates were increased in Atpalpha(2206) mutants, suggesting that, in the absence of action potential requirements, these synaptic terminals are healthy, if not hyperactive. Dye labeling studies revealed aberrant synaptic vesicle cycling in sesB mutants indicating a reduction of functional synaptic vesicles. We therefore postulate that both stress-sensitive mutants harbor unique neurotransmission defects: Atpalpha(2206) mutants are unable to maintain ionic gradients required during repetitive action potential propagation, and sesB mutants cannot maintain synaptic vesicle cycling during periods of high demand.  相似文献   

4.
Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity.  相似文献   

5.
Adenine nucleotide translocases (ANT) are required for the exchange of ADP and ATP across the inner mitochondrial membrane. They are essential for life, and most eukaryotes have at least two different Ant genes. Only one gene had been described from Drosophila, and this had not been characterized genetically. We show that mutations in this gene correspond to the previously described loci, sesB and l(1)9Ed. Immediately adjacent to this gene is another encoding a second ANT protein, which has 78% identity to that encoded by sesB/l(1)9Ed. These two genes are transcribed from a common promoter, and their mRNAs are produced by differential splicing. Hutter and Karch suggested that the sesB ANT gene corresponded to Hmr, a gene identified by an allele that rescues otherwise inviable interspecific hybrids between Drosophila melanogaster and its sibling species. This hypothesis is not supported by our study of the ANT genes of D. melanogaster.  相似文献   

6.
Mitochondria are the primary source of ATP needed for the steps of the synaptic vesicle cycle. Dynamin-related protein (DRP) is involved in the fission of mitochondria and peroxisomes. To assess the role of mitochondria in synaptic function, we characterized a Drosophila DRP mutant combination that shows an acute temperature-sensitive paralysis. Sequencing of the mutant reveals a single amino acid change in the guanosine triphosphate hydrolysing domain (GTPase domain) of DRP. The synaptic mitochondria in these mutants are remarkably elongated, suggesting a role for DRP in mitochondrial fission in Drosophila. There is a loss of neuronal transmission at restrictive temperatures in electroretinogram (ERG) recordings. Like stress-sensitive B (sesB), a mitochondrial adenosine triphosphate (ATP) translocase mutant we studied earlier for its effects on synaptic vesicle recycling, an allele-specific reduction in the temperature of paralysis of Drosophila synaptic vesicle recycling mutant shibire was seen in the DRP mutant background. These data, in addition to depletion of vesicles observed in electron microscopic sections of photoreceptor synapses at restrictive temperatures, suggest a block in synaptic vesicle recycling due to reduced mitochondrial function.  相似文献   

7.
Employing the Drosophila heart, a model system for genetic and molecular investigation of cardiac physiology, we demonstrate here an essential role for the protein dynamin, encoded by the Drosophila gene shibire(ts) (shi(ts)), in maintaining normal heart function. In flies bearing two temperature-sensitive alleles of shi, shi(ts1) and shi(ts2), heartbeat is both slower and less rhythmic than in wild-type animals. Serotonin and norepinephrine, normally cardioacceleratory in wild type, are without effect in flies bearing the shi mutation. Electrocardiogram (EKG) analysis reveals a bigeminal beat in mutant hearts, unlike the single electrical pulse in wild-type. The gene no action potential (temperature sensitive), with previously-described cardiac aberrations similar to those of shi, interacts with shi: shi/shi;nap/nap mutants have almost wild-type heart function. J. Exp. Zool. 289:81-89, 2001.  相似文献   

8.
Behavior is a manifestation of temporally and spatially defined neuronal activities. To understand how behavior is controlled by the nervous system, it is important to identify the neuronal substrates responsible for these activities, and to elucidate how they are integrated into a functional circuit. I introduce a novel and general method to conditionally perturb anatomically defined neurons in intact Drosophila. In this method, a temperature-sensitive allele of shibire (shi(ts1)) is overexpressed in neuronal subsets using the GAL4/UAS system. Because the shi gene product is essential for synaptic vesicle recycling, and shi(ts1) is semidominant, a simple temperature shift should lead to fast and reversible effects on synaptic transmission of shi(ts1) expressing neurons. When shi(ts1) expression was directed to cholinergic neurons, adult flies showed a dramatic response to the restrictive temperature, becoming motionless within 2 min at 30 degrees C. This temperature-induced paralysis was reversible. After being shifted back to the permissive temperature, they readily regained their activity and started to walk in 1 min. When shi(ts1) was expressed in photoreceptor cells, adults and larvae exhibited temperature-dependent blindness. These observations show that the GAL4/UAS system can be used to express shi(ts1) in a specific subset of neurons to cause temperature-dependent changes in behavior. Because this method allows perturbation of the neuronal activities rapidly and reversibly in a spatially and temporally restricted manner, it will be useful to study the functional significance of particular neuronal subsets in the behavior of intact animals.  相似文献   

9.
Koh TW  Verstreken P  Bellen HJ 《Neuron》2004,43(2):193-205
We describe the isolation of mutations in dynamin-associated protein 160 kDa (dap160), the Drosophila homolog of intersectin, a putative adaptor for proteins involved in endocytosis, cytoskeletal regulation, and signaling. We show that partial loss-of-function mutants display temperature-sensitive (ts) paralysis, whereas null mutants show ts defects in endocytosis. Loss-of-function mutants exhibit bouton overgrowth at larval neuromuscular junctions (NMJs), but evoked neurotransmission is normal. Mutant NMJs show a mild endocytic defect at 22 degrees C, which is strongly enhanced at 34 degrees C. The levels of dynamin, synaptojanin and endophilin are severely reduced in dap160 mutant NMJs, suggesting that Dap160 serves to stabilize an endocytic macromolecular complex. Electron microscopy reveals fewer vesicles, aberrant large vesicles, and an accumulation of endocytic intermediates at active and periactive zones in mutant terminals. Our data suggest that Dap160, like dynamin, is involved in synaptic vesicle retrieval at active and periactive zones.  相似文献   

10.
In the temperature sensitive mutant of Drosophila, shibirets1 (shi), synaptic transmission in the dorsal longitudinal flight muscles (DLM) is normal at 19 degrees C, but is diminished progressively as the temperature is raised, and is blocked at 29 degrees C. The purpose of this paper is to determine whether this defect is located presynaptically, postsynaptically, or both. It is demonstrated here that the postsynaptic sensitivity to L-glutamate, the putative transmitter for this synapse, is not decreased at 29 degrees C. Furthermore, studies conducted with genetic mosaics of this mutant show that transmission is blocked when a mutant motor neuron synapses on a wild-type muscle fiber, but is not blocked when a wild-type motor neuron synapses on a mutant muscle fiber. Thus, the shi phenotype (temperature dependent transmission block) correlates with a shi motor neuron, not with a shi muscle fiber. The data, therefore, suggest that the defect is not postsynaptic, but presynaptic.  相似文献   

11.
ABSTRACT Dynamin is a GTPase protein that is essential for clathrin‐mediated endocytosis of synaptic vesicle membranes. The Drosophila dynamin mutation shits1 changes a single residue (G273D) at the boundary of the GTPase domain. In cell fractionation of homogenized fly heads without monovalent cations, all dynamin was in pellet fractions and was minimally susceptible to Triton‐X extraction. Addition of Na+ or K+ can extract dynamin to the cytosolic (supernatant) fraction. The shits1 mutation reduced the sensitivity of dynamin to salt extraction compared with other temperature‐sensitive alleles or wild type. Sensitivity to salt extraction in shits1 was enhanced by GTP and nonhydrolyzable GTP‐γS. The shits1 mutation may therefore induce a conformational change, involving the GTP binding site, that affects dynamin aggregation. Temperature‐sensitive shibire mutations are known to arrest endocytosis at restrictive temperatures, with concomitant accumulation of presynaptic collared pits. Consistent with an effect upon dynamin aggregation, intact shits1 flies recovered much more slowly from heat‐induced paralysis than did other temperature‐sensitive shibire mutants. Moreover, a genetic mutation that lowers GTP abundance (awdmsf15), which reduces the paralytic temperature threshold of other temperature‐sensitive shibire mutations that lie closer to consensus GTPase motifs, did not reduce the paralytic threshold of shits1. Taken together, the results may link the GTPase domain to conformational shifts that influence aggregation in vitro and endocytosis in vivo, and provide an unexpected point of entry to link the biophysical properties of dynamin to physiological processes at synapses. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 319–329, 2002  相似文献   

12.
Autophagy is a central lysosomal degradation pathway required for maintaining cellular homeostasis and its dysfunction is associated with numerous human diseases. To identify players in autophagy, we tested w1200 chemically induced mutations on the X chromosome in Drosophila fat body clones and discovered that shibire(shi) plays an essential role in starvation-induced autophagy. shi encodes a dynamin protein required for fission of clathrin-coated vesicles from the plasma membrane during endocytosis. We showed that Shi is dispensable for autophagy initiation and autophagosomeelysosome fusion, but required for lysosomal/autolysosomal acidification. We also showed that other endocytic core machinery components like clathrin and AP2 play similar but not identical roles in regulating autophagy and lysosomal function as dynamin. Previous studies suggested that dynamin directly regulates autophagosome formation and autophagic lysosome reformation(ALR) through its excision activity. Here, we provide evidence that dynamin also regulates autophagy indirectly by regulating lysosomal function.  相似文献   

13.
Kuromi H  Honda A  Kidokoro Y 《Neuron》2004,41(1):101-111
Endocytosis of synaptic vesicles follows exocytosis, and both processes require external Ca(2+). However, it is not known whether Ca(2+) influx through one route initiates both processes. At larval Drosophila neuromuscular junctions, we separately measured exocytosis and endocytosis using FM1-43. In a temperature-sensitive Ca(2+) channel mutant, cacophony(TS2), exocytosis induced by high K(+) decreased at nonpermissive temperatures, while endocytosis remained unchanged. In wild-type larvae, a spider toxin, PLTXII, preferentially inhibited exocytosis, whereas the Ca(2+) channel blockers flunarizine and La(3+) selectively depressed endocytosis. None of these blockers affected exocytosis or endocytosis induced by a Ca(2+) ionophore. Evoked synaptic potentials were depressed regardless of stimulus frequency in cacophony(TS2) at nonpermissive temperatures and in wild-type by PLTXII, whereas flunarizine or La(3+) gradually depressed synaptic potentials only during high-frequency stimulation, suggesting depletion of synaptic vesicles due to blockade of endocytosis. In shibire(ts1), a dynamin mutant, flunarizine or La(3+) inhibited assembly of clathrin at the plasma membrane during stimulation without affecting dynamin function.  相似文献   

14.
Reenan RA  Rogina B 《Aging cell》2008,7(2):179-186
General locomotor activity decreases with normal aging in animals and could be partially explained by decreases in neuronal function. Voltage-gated Na+ channels are essential in initiating and propagating rapid electrical impulses underlying normal locomotor activity and behavior in animals. Isolation of mutations conferring temperature-sensitive (ts) paralysis has been an extremely powerful paradigm for identifying genes involved in neuronal functions, such as membrane excitability and synaptic transmission. For instance, decreased expression of wild-type Na+ channels in flies harboring the no-action-potential ( nap ) mutant allele ( mlenapts ) confers rapid and reversible ts paralysis, because of failure of action potential propagation. Here, we report that aging wild-type Drosophila gradually develops an acquired susceptibility to ts paralysis that is indistinguishable from that seen in young ts paralytic mlenapts mutants. Moreover, we show that this general age-dependent susceptibility is also present in mlenapts flies, although the effects are shifted to lower temperature regimes. The mlenapts flies also exhibit decreased lifespan and increased frailty. Paralysis and decreased lifespan of mlenapts flies were partially rescued by increasing the dosage of para , the structural gene for the major action potential Na+ channel in central nervous system of Drosophila . Lastly, we show a dramatic scaling of ts paralysis susceptibility with chronological age in short-lived and long-lived mutant flies, further demonstrating that this age-dependent risk is independent of genetic background. Thus, decreased neural transmission, a hallmark of which is ts paralysis, is a biomarker of aging.  相似文献   

15.
Dellinger B  Felling R  Ordway RW 《Genetics》2000,155(1):203-211
The N-ethylmaleimide-sensitive fusion protein (NSF) has been implicated in vesicle trafficking in perhaps all eukaryotic cells. The Drosophila comatose (comt) gene encodes an NSF homolog, dNSF1. Our previous work with temperature-sensitive (TS) paralytic alleles of comt has revealed a function for dNSF1 at synapses, where it appears to prime synaptic vesicles for neurotransmitter release. To further examine the molecular basis of dNSF1 function and to broaden our analysis of synaptic transmission to other gene products, we have performed a genetic screen for mutations that interact with comt. Here we report the isolation and analysis of four mutations that modify TS paralysis in comt, including two intragenic modifiers (one enhancer and one suppressor) and two extragenic modifiers (both enhancers). The intragenic mutations will contribute to structure-function analysis of dNSF1 and the extragenic mutations identify gene products with related functions in synaptic transmission. Both extragenic enhancers result in TS behavioral phenotypes when separated from comt, and both map to loci not previously identified in screens for TS mutants. One of these mutations is a TS paralytic allele of the calcium channel alpha1-subunit gene, cacophony (cac). Analysis of synaptic function in these mutants alone and in combination will further define the in vivo functions and interactions of specific gene products in synaptic transmission.  相似文献   

16.
The product of the abnormal wing discs (awd) gene of Drosophila is 78% identical to the product of the nm23 gene of mammals, which is differentially expressed in certain metastatic tumors. We present evidence that the awd gene codes for a nucleoside diphosphate kinase (NDP kinase) and that this Awd/NDP kinase is microtubule associated. Neuroblasts in Drosophila larvae homozygous for a null mutation in the awd gene are arrested in metaphase, indicating that microtubule-associated Awd/NDP kinase plays a critical role in spindle microtubule polymerization.  相似文献   

17.
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure–sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shits1 mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.  相似文献   

18.
A cell-adhesion molecule fasciclin 2 (FAS2), which is required for synaptic growth and still life (SIF), an activator of RAC, were found to localize in the surrounding region of the active zone, defining the periactive zone in Drosophila neuromuscular synapses. BetaPS integrin and discs large (DLG), both involved in synaptic development, also decorated the zone. However, shibire (SHI), the Drosophila dynamin that regulates endocytosis, was found in the distinct region. Mutant analyses showed that sif genetically interacted with Fas2 in synaptic growth and that the proper localization of SIF required FAS2, suggesting that they are components in related signaling pathways that locally function in the periactive zones. We propose that neurotransmission and synaptic growth are primarily regulated in segregated subcellular spaces, active zones and periactive zones, respectively.  相似文献   

19.
While studying the developmental functions of the Drosophila dopamine synthesis pathway genes, we noted interesting and unexpected mutant phenotypes in the developing trachea, a tubule network that has been studied as a model for branching morphogenesis. Specifically, Punch (Pu) and pale (ple) mutants with reduced dopamine synthesis show ectopic/aberrant migration, while Catecholamines up (Catsup) mutants that over-express dopamine show a characteristic loss of migration phenotype. We also demonstrate expression of Punch, Ple, Catsup and dopamine in tracheal cells. The dopamine pathway mutant phenotypes can be reproduced by pharmacological treatments of dopamine and a pathway inhibitor 3-iodotyrosine (3-IT), implicating dopamine as a direct mediator of the regulatory function. Furthermore, we show that these mutants genetically interact with components of the endocytic pathway, namely shibire/dynamin and awd/nm23, that promote endocytosis of the chemotactic signaling receptor Btl/FGFR. Consistent with the genetic results, the surface and total cellular levels of a Btl-GFP fusion protein in the tracheal cells and in cultured S2 cells are reduced upon dopamine treatment, and increased in the presence of 3-IT. Moreover, the transducer of Btl signaling, MAP kinase, is hyper-activated throughout the tracheal tube in the Pu mutant. Finally we show that dopamine regulates endocytosis via controlling the dynamin protein level.  相似文献   

20.
Roussel D  Chainier F  Rouanet J  Barré H 《FEBS letters》2000,477(1-2):141-144
Intermyofibrillar and subsarcolemmal mitochondria were isolated from duckling gastrocnemius muscle. The adenine nucleotide translocase (ANT) content of subsarcolemmal mitochondria was found to be half of that present in intermyofibrillar mitochondria. In addition, cold acclimation resulted in a 1.7-fold increase in subsarcolemmal mitochondrial ANT content, with intermyofibrillar mitochondrial ANT remaining constant. This change in mitochondrial ANT content correlates with the previously reported cold-induced change in the sensitivity of mitochondria to palmitate-inhibited ATP synthesis [Roussel et al. (1998) FEBS Lett. 439, 258-262]. It is suggested that the mitochondrial ANT content enhances or reduces the fatty acid uncoupling activity in tissue, depending on the energetic state of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号