首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pro-inflammatory cytokines are implicated as the main mediators of beta-cell death during type 1 diabetes but the exact mechanisms remain unknown. This study examined the effects of interleukin-1beta (IL-1beta), interferon-gamma (IFNgamma) and tumour necrosis factor alpha (TNFalpha) on a rat insulinoma cell line (RIN-r) in order to identify the core mechanism of cytokine-induced beta-cell death. Treatment of cells with a combination of IL-1beta and IFNgamma (IL-1beta/IFNgamma)induced apoptotic cell death. TNFalpha neither induced beta-cell death nor did it potentiate the effects of IL-1beta, IFNgamma or IL-1beta/IFNgamma . The cytotoxic effect of IL-1beta/IFNgamma was associated with the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide. Adenoviral-mediated expression of iNOS (AdiNOS) alone was sufficient to induce caspase activity and apoptosis. The broad range caspase inhibitor, Boc-D-fmk, blocked IL-1beta/IFNgamma -induced caspase activity, but not nitric oxide production nor cell death. However, pre-treatment with L-NIO, a NOS inhibitor, prevented nitric oxide production, caspase activity and reduced apoptosis. IL-1beta/IFNgamma -induced apoptosis was accompanied by loss of mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9, -7 and -3. Transduction of cells with Ad-Bcl-X(L) blocked both iNOS and cytokine-mediated mitochondrial changes and subsequent apoptosis, downstream of nitric oxide. We conclude that cytokine-induced nitric oxide production is both essential and sufficient for caspase activation and beta-cell death, and have identified Bcl-X(L) as a potential target to combat beta-cell apoptosis.  相似文献   

2.
Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.  相似文献   

3.
LPS pretreatment of human pro-monocytic THP-1 cells induces tolerance to secondary LPS stimulation with reduced TNFalpha production. However, secondary stimulation with heat-killed Staphylococcus aureus (HKSa) induces priming as evidenced by augmented TNFalpha production. The pro-inflammatory cytokine, IFNgamma, also abolishes suppression of TNFalpha in LPS tolerance. The effect of LPS tolerance on HKSa and IFNgamma-induced inflammatory mediator production is not well defined. We hypothesized that LPS, HKSa and IFNgamma differentially regulate pro-inflammatory mediators and chemokine production in LPS-induced tolerance. THP-1 cells were pretreated for 24 h with LPS (100 ng/ml) or LPS (100 ng/ml) + IFNgamma (1 microg/ml). Cells were subsequently stimulated with LPS or HKSa (10 microg/ml) for 24 h. The production of the cytokines TNFalpha, IL-6, IL-1beta, and GMCSF and the chemokine IL-8 were measured in supernatants. LPS and HKSa stimulated TNFalpha (3070 +/- 711 pg/ml and 217 +/- 9 pg/ml, respectively) and IL-6 (237 +/- 8.9 pg/ml and 56.2 +/- 2.9 pg/ml, p < 0.05, n = 3, respectively) in control cells compared to basal levels (< 25 pg/ml). LPS induced tolerance to secondary LPS stimulation as evidenced by a 90% (p < 0.05, n = 3) reduction in TNFalpha. However, LPS pretreatment induced priming to HKSa as demonstrated by increased TNFalpha (2.7 fold, from 217 to 580 pg/ml, p < 0.05, n = 3 ). In contrast to suppressed TNFalpha, IL-6 production was augmented to secondary LPS stimulation (9 fold, from 237 to 2076 pg/ml, p < 0.01, n = 3) and also primed to HKSa stimulation (62 fold, from 56 to 3470 pg/ml, p < 0.01, n = 3). LPS induced IL-8 production and to a lesser extent IL-1beta and GMCSF. LPS pretreatment did not affect secondary LPS stimulated IL-8 or IL-1beta, although HKSa stimulation augmented both mediators. In addition, IFNgamma pretreatment reversed LPS tolerance as evidenced by increased TNFalpha levels while IL-6, IL-1beta, and GMCSF levels were further augmented. However, IL-8 production was not affected by IFNgamma. These data support our hypothesis of differential regulation of cytokines and chemokines in gram-negative- and gram-positive-induced inflammatory events. Such changes may have implications in the pathogenesis of polymicrobial sepsis.  相似文献   

4.
In Alzheimer's disease, beta-amyloid (Abeta) plaques are surrounded by activated astrocytes and microglia. A growing body of evidence suggests that these activated glia contribute to neurotoxicity through the induction of inflammatory cytokines such as interleukin (IL)-1beta and tumor necrosis factor-alpha (TNFalpha) and the production of neurotoxic free radicals, mediated in part by the expression of inducible nitric-oxide synthase (iNOS). Here, we address the possibility that Abeta-stimulated iNOS expression might result from an initial induction of IL-1beta and TNFalpha. We find that in Abeta-stimulated astrocyte cultures, IL-1beta and TNFalpha production occur before iNOS production, new protein synthesis is required for increased iNOS mRNA levels, and the IL-1 receptor antagonist IL-1ra can inhibit nitrite accumulation. Likewise, dominant-negative mutants of tumor necrosis factor-alpha receptor-associated factor (TRAF) 6, TRAF2, and NFkappaB-inducing kinase (NIK), intracellular proteins involved in IL-1 and TNFalpha receptor signaling cascades, inhibit Abeta-stimulated iNOS promoter activity. Our data suggest that Abeta stimulation of astrocyte iNOS is mediated in part by IL-1beta and TNFalpha, and involves a TRAF6-, TRAF2-, and NIK-dependent signaling mechanism.  相似文献   

5.
6.
7.
Protein metabolism contributes in the regulation of gut barrier function, which may be altered during inflammatory states. There are three major proteolytic pathways in mammalian cells: lysosomal, Ca(2+)-activated and ubiquitin-proteasome. The regulation of proteolytic activities during inflammation remains unknown in intestine. Intestinal epithelial cells, HCT-8, were stimulated by IL-1beta, IFNgamma and TNFalpha each alone or in combination (Cytomix). Proteolytic activities were assessed using fluorogenic substrates and specific inhibitors, protein expressions by Western blot. Lysosomal and Ca(2+)-activated pathways were not significantly altered by any treatment. In contrast, the activity of ubiquitin-proteasome system was stimulated by IFNgamma and Cytomix (155, 160 versus 100, P<0.05, respectively) but remained unaffected by IL-1beta and TNFalpha. Free ubiquitin expression, but not ubiquitinated proteins, was enhanced by IFNgamma and Cytomix. The expression of proteasome 20S alpha1 subunit, a constitutive proteasome 20S subunit, was not altered, beta5 subunit expression was weakly decreased by Cytomix and inducible beta5i subunit expression was markedly increased in response to IFNgamma and to Cytomix (202, 206 versus 100, P<0.05, respectively). In conclusion, lysosomal, Ca(2+)-activated and constitutive proteasome activities were not affected by IL-1beta, IFNgamma and TNFalpha alone or in combination, in HCT-8 cells. These results suggest that IFNgamma, but not IL-1beta and TNFalpha, increases immunoproteasome, which might contribute to enhanced antigen presentation during inflammatory bowel diseases.  相似文献   

8.
We studied inhibition of histone deacetylases (HDACs), which results in the unraveling of chromatin, facilitating increased gene expression. ITF2357, an orally active, synthetic inhibitor of HDACs, was evaluated as an anti-inflammatory agent. In lipopolysaccharide (LPS)-stimulated cultured human peripheral blood mononuclear cells (PBMCs), ITF2357 reduced by 50% the release of tumor necrosis factor-alpha (TNFalpha) at 10 to 22 nM, the release of intracellular interleukin (IL)-1alpha at 12 nM, the secretion of IL-1beta at 12.5 to 25 nM, and the production of interferon-gamma (IFNgamma) at 25 nM. There was no reduction in IL-8 in these same cultures. Using the combination of IL-12 plus IL-18, IFNgamma and IL-6 production was reduced by 50% at 12.5 to 25 nM, independent of decreased IL-1 or TNFalpha. There was no evidence of cell death in LPS-stimulated PBMCs at 100 nM ITF2357, using assays for DNA degradation, annexin V, and caspase-3/7. By Northern blotting of PBMCs, there was a 50% to 90% reduction in LPS-induced steady-state levels of TNFalpha and IFNgamma mRNA but no effect on IL-1beta or IL-8 levels. Real-time PCR confirmed the reduction in TNFalpha RNA by ITF2357. Oral administration of 1.0 to 10 mg/kg ITF2357 to mice reduced LPS-induced serum TNFalpha and IFNgamma by more than 50%. Anti-CD3-induced cytokines were not suppressed by ITF2357 in PBMCs either in vitro or in the circulation in mice. In concanavalin-A-induced hepatitis, 1 or 5 mg/kg of oral ITF2357 significantly reduced liver damage. Thus, low, nonapoptotic concentrations of the HDAC inhibitor ITF2357 reduce pro-inflammatory cytokine production in primary cells in vitro and exhibit anti-inflammatory effects in vivo.  相似文献   

9.
Interleukin (IL)-1 and tumor necrotic factor alpha (TNFalpha) are pivotal in the pathogenesis of endotoxemia. In spite of the in vitro finding that IL-1beta, but not TNFalpha, can induce iNOS mRNA and NO production as a single stimulus in hepatocytes in primary culture, the involvement of IL-1 in iNOS induction in the liver has been less clear in vivo. To address this, we challenged IL-1alpha/beta double-knockout (IL-1alpha/beta(-/-)) and TNFalpha(-/-) mice with lipopolysaccharide (LPS). As compared with wild-type mice, the increases in the plasma NO level measured as nitrite and nitrate and hepatic iNOS were significantly reduced in IL-1alpha/beta(-/-) and TNFalpha(-/-) mice 8 and 12h after the LPS challenge. In the wild-type mice, iNOS protein was first detected in Kupffer cells around the portal vein 2h after LPS challenge; and then it spread to hepatocytes throughout the intralobular region of the liver by 8h. Although the expression of iNOS protein was detected in Kupffer cells of both IL-1alpha/beta(-/-) and TNFalpha(-/-) mice, its level was moderate in hepatocytes of IL-1alpha/beta(-/-) mice, but negligible in those of TNFalpha(-/-) mice, 8h after LPS challenge. Concomitant with the expression of iNOS protein in the liver, Toll-like receptor 4, the signaling receptor for LPS, was expressed in hepatocytes of wild-type and IL-1alpha/beta(-/-) mice, but not of TNFalpha(-/-) mice. These results demonstrate that the expression of Toll-like receptor 4 is well correlated with that of iNOS protein in hepatocytes in vivo after LPS challenge and that IL-1 is not essential for the induction of iNOS in hepatocytes in vivo.  相似文献   

10.
Ren G  Zhang L  Zhao X  Xu G  Zhang Y  Roberts AI  Zhao RC  Shi Y 《Cell Stem Cell》2008,2(2):141-150
Mesenchymal stem cells (MSCs) can become potently immunosuppressive through unknown mechanisms. We found that the immunosuppressive function of MSCs is elicited by IFNgamma and the concomitant presence of any of three other proinflammatory cytokines, TNFalpha, IL-1alpha, or IL-1beta. These cytokine combinations provoke the expression of high levels of several chemokines and inducible nitric oxide synthase (iNOS) by MSCs. Chemokines drive T cell migration into proximity with MSCs, where T cell responsiveness is suppressed by nitric oxide (NO). This cytokine-induced immunosuppression was absent in MSCs derived from iNOS(-/-) or IFNgammaR1(-/-) mice. Blockade of chemokine receptors also abolished the immunosuppression. Administration of wild-type MSCs, but not IFNgammaR1(-/-) or iNOS(-/-) MSCs, prevented graft-versus-host disease in mice, an effect reversed by anti-IFNgamma or iNOS inhibitors. Wild-type MSCs also inhibited delayed-type hypersensitivity, while iNOS(-/-) MSCs aggravated it. Therefore, proinflammatory cytokines are required to induce immunosuppression by MSCs through the concerted action of chemokines and NO.  相似文献   

11.
We determined effects of IL-1alpha, TNFalpha and IFNgamma on sICAM-1 release in culture media from human aortic smooth muscle cells (AOSMC), dermal microvascular endothelial cells (DMEC), keratinocytes (KC), bronchial epithelial cells (BEC) and lung fibroblasts (LF) as determined by ELISA. Under basal conditions of cultures for 20 h, low concentrations of sICAM-1 were only detected in the culture media of two (DMEC and BEC) of these cell types. IL-1alpha, TNFalpha and IFNgamma stimulated sICAM-1 from these cells. IFNgamma stimulated more shedding from AOSMC, BEC and KC than IL-1alpha or TNFalpha. TNFalpha enhanced more sICAM-1 release from DEMC than from AOSMC, BEC and LF. IL-1alpha and IFNgamma or TNFalpha and IFNgamma acted synergistically to enhance shedding of sICAM-1 from these cells. The levels sICAM-1 in pathophysiological conditions may influence leukocyte-vascular cell interactions to block leukocyte transmigration to tissue injury sites as a negative feedback mechanism.  相似文献   

12.
13.
The aim of this study was to estimate the influence of corticosteroids on Th1 and Th2 serum cytokine balance in patients with GO: IFNgamma, TNFalpha, IL-4 and IL-10. Further, we tested the hypothesis of an up-regulation of Th2 immune response during successful treatment with corticosteroids to explain their beneficial effect in Graves' ophthalmopathy. Serum cytokines were detected in three groups of subjects: 20 patients with Graves' disease without ophthalmopathy (Gd), 16 patients with clinical symptoms of ophthalmopathy (GO) (CAS over 3 points, last consultation record for GO less than a year old) and 16 healthy volunteers. Corticosteroid therapy consisted of intravenous infusions of methylprednisolone (MP) (2 series, 3 g each time) and subsequent treatment with oral prednisone (60 mg per day) in a tapering schedule. The serum samples were collected 24 hours before MP, 24 hours after MP, 14 days of treatment with prednisone and at the end of corticosteroid therapy. The levels of IFNgamma, TNFalpha, IL-4 and IL-10 in the serum were determined using ELISA. Statistical significance was estimated by the Mann-Whitney U-test. Our findings show a deviation to systemic Th2 profile cytokines in Graves' disease. In patients with GO, we found a significantly increased serum IL-10 concentration. In corticosteroid-responsive patients, the balance of serum cytokines IL-4/IFNgamma, IL-4/TNFalpha, IL-10/IFNgamma and IL-10/TNFalpha increased and remained upregulated until the end of the study. In non-responders, the balance of serum cytokines studied increased after methylprednisolone but declined markedly during continuation of the therapy with prednisone. In summary, our results show that efficient corticosteroid therapy may be related to its influence on Th2/Th1 profile cytokine balance. The upregulation of serum IL-4 and IL-10 during successful treatment with corticosteroids indicate the possibility of using these cytokines as predictors of the beneficial effect of corticosteroids in Graves' ophthalmopathy.  相似文献   

14.
15.
The objective of this study was to determine the presence of autocrine/paracrine regulation of matrix metalloproteinase-9 (MMP-9) expression mediated by proinflammatory cytokines in human fetal membranes. Fetal membranes obtained from women who underwent cesarean delivery before labor were manually separated into amnion and chorion layers and maintained in culture. These explants were stimulated with tumor necrosis factor alpha (TNFalpha), interleukin-1beta (IL-1beta), and either lipopolysaccharide (LPS) alone or LPS with anti-TNFalpha or anti-IL-1beta-neutralizing antibodies. Levels of proMMP-9 in culture media were evaluated by zymography. Enzyme-linked immunosorbant assay was performed to measure the quantity of IL-1beta, TNFalpha, and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) after LPS stimulation. ProMMP-9 activity was upregulated after stimulation of the amnion by LPS, TNFalpha, and IL-1beta. The increased activity of proMMP-9 resulting from LPS stimulation in the amnion was blocked by the addition of TNFalpha neutralizing antibody but not with anti-IL-1beta. No significant effect of LPS, TNFalpha, or IL-1beta on proMMP-9 expression was observed in the chorion; however, the chorion produced both cytokines when stimulated with LPS. In contrast, TIMP-1 levels remained unchanged in all cultures incubated in the presence of LPS. Therefore, these data indicate that proMMP-9 is produced by the amnion but not the chorion in response to LPS. Because anti-TNFalpha-neutralizing antibody inhibits proMMP-9 activity in the amnion, TNFalpha appears to upregulate proMMP-9 production by the amnion in an autocrine fashion. Meanwhile, TNFalpha and IL-1beta produced by the chorion may upregulate amnionic proMMP-9 production in a paracrine manner.  相似文献   

16.
17.
Human recombinant IL-1beta and TNFalpha have been previously used to induce a cytokine response in canine chondrocytes. In order to establish this functional relation in a homologous system in vitro, we have developed both 2D and 3D models of inflammatory arthritis using canine recombinant cytokines in canine articular chondrocytes. IL-1beta and TNFalpha were cloned and subsequently expressed in Escherichia coli. The purified recombinant canine cytokines were used to simulate inflammation in vitro and the expression of typical inflammation markers such as proinflammatory cytokines (IL-1beta, IL-6, IL-8, GM-CSF and TNFalpha), enzyme mediators (MMP-3 MMP-13, iNOS, COX-2) and their catabolites (NO, PGE(2)) was measured. High expression of proinflammatory cytokines, enzyme mediators and their catabolites was only observed in IL-1beta/TNFalpha stimulated cells. We conclude that the canine IL-1beta and TNFalpha generated in this study are biologically active and equally effective in the canine cell culture systems. Inducing an inflammatory pathway by canine exogenous cytokines in canine chondrocytes provides a useful tool for the study of canine inflammatory arthritis.  相似文献   

18.
19.
Phospholipid scramblase 1 (PLSCR1) is a member of PLSCR gene family that has been implicated in multiple cellular processes including movement of phospholipids, gene regulation, immuno-activation, and cell proliferation/apoptosis. In the present study, we identified PLSCR1 as a positive intracellular acute phase protein that is upregulated by LPS in liver, heart, and adipose tissue, but not skeletal muscle. LPS administration resulted in a marked increase in PLSCR1 mRNA and protein levels in the liver. This stimulation occurred rapidly (within 2 h), and was very sensitive to LPS (half-maximal response at 0.1 microg/mouse). Moreover, two other APR-inducers, zymosan and turpentine, also produced significant increases in PLSCR1 mRNA and protein levels, indicating that PLSCR1 was stimulated in a number of models of the APR. To determine signaling pathways by which LPS stimulated PLSCR1, we examined the effect of proinflammatory cytokines in vitro and in vivo. TNFalpha, IL-1beta, and IL-6 all stimulated PLSCR1 in cultured Hep B3 hepatocytes, whereas only TNFalpha stimulated PLSCR1 in cultured 3T3-L1 adipocytes, suggesting cell type-specific effects of cytokines. Furthermore, the LPS-stimulated increase in liver PLSCR1 mRNA was greatly attenuated by 80% in TNFalpha and IL-1beta receptor null mice as compared to wild-type controls. In contrast, PLSCR1 levels in adipose tissue were induced to a similar extent in TNFalpha and IL-1beta receptor null mice and controls. These results indicate that maximal stimulation of PLSCR1 by LPS in liver required TNFalpha and/or IL-1beta, whereas the stimulation of PLSCR1 in adipose tissue is not dependent on TNFalpha and/or IL-1beta. These data provide evidence that PLSCR1 is a positive intracellular acute phase protein with a tissue-specific mechanism for up-regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号