首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Werder M  Han CH  Wehrli E  Bimmler D  Schulthess G  Hauser H 《Biochemistry》2001,40(38):11643-11650
The serum lipoprotein high-density lipoprotein (HDL), which is a ligand of scavenger receptors such as scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36), can act as a donor particle for intestinal lipid uptake into the brush border membrane (BBM). Both cholesterol and phospholipids are taken up by the plasma membrane of BBM vesicles (BBMV) and Caco-2 cells in a facilitated (protein-mediated) process. The protein-mediated transfer of cholesterol from reconstituted HDL to BBMV depends on the lipid composition of the HDL. In the presence of sphingomyelin, the transfer of cholesterol is slowed by a factor of about 3 probably due to complex formation between cholesterol and the sphingolipid. It is shown that the mechanism of lipid transfer from reconstituted HDL to either BBMV or Caco-2 cells as the acceptor is consistent with selective lipid uptake: the lipid donor docks at the membrane-resident scavenger receptors which mediate the transfer of lipids between donor and acceptor. Selective lipid uptake implies that lipid, but no apoprotein is transferred from the donor to the BBM, thus excluding endocytotic processes. The two BBM models used here clearly indicate that fusion of donor particles with the BBM can be ruled out as a major mechanism contributing to intestinal lipid uptake. Here we demonstrate that CD36, another member of the family of scavenger receptors, is present in rabbit and human BBM vesicles. This receptor mediates the uptake of free cholesterol, but not of esterified cholesterol, the uptake of which is mediated exclusively by SR-BI. More than one scavenger receptor appears to be involved in the uptake of free cholesterol with SR-BI contributing about 25% and CD36 about 35%. There is another yet unidentified protein accounting for the remaining 30 to 40%.  相似文献   

2.
We compared cholesterol uptake into brush border membrane vesicles (BBMV) made from the small intestines of either wild-type or Niemann-Pick C1-like 1 (NPC1L1) knockout mice to elucidate the contribution of NPC1L1 to facilitated uptake; this uptake involves cholesterol transport from lipid donor particles into the BBM of enterocytes. The lack of NPC1L1 in the BBM of the knockout mice had no effect on the rate of cholesterol uptake. It follows that NPC1L1 cannot be the putative high-affinity, ezetimibe-sensitive cholesterol transporter in the brush border membrane (BBM) as has been proposed by others. The following findings substantiate this conclusion: (I) NPC1L1 is not a brush border membrane protein but very likely localized to intracellular membranes; (II) the cholesterol absorption inhibitor ezetimibe and its analogues reduce cholesterol uptake to the same extent in wild-type and NPC1L1 knockout mouse BBMV. These findings indicate that the prevailing belief that NPC1L1 facilitates intestinal cholesterol uptake into the BBM and its interaction with ezetimibe is responsible for the inhibition of this process can no longer be sustained.  相似文献   

3.
H Thurnhofer  H Hauser 《Biochemistry》1990,29(8):2142-2148
Absorption of cholesterol by small intestinal brush border membrane from either mixed micelles or small unilamellar vesicles is protein-mediated. It is a second-order reaction. The kinetic data are consistent with a mechanism involving collision-induced transfer of cholesterol. With micelles as the donor particle, there is net transfer of cholesterol while with small unilamellar vesicles as the donor, cholesterol is evenly distributed between the two lipid pools at equilibrium. The cholesterol absorption by brush border membrane from both mixed micelles and small unilamellar vesicles reveals saturation kinetics. Proteolytic treatment of brush border membrane with papain releases about 25% of the total membrane protein. As a result, the cholesterol uptake by brush border membrane changes from a second-order reaction to a first-order one. The reaction mechanism changes from collision-induced cholesterol uptake to a mechanism involving diffusion of monomeric cholesterol through the aqueous phase. The protein(s) released into the supernatant by papain treatment of brush border membrane exhibit(s) cholesterol exchange activity between two populations of small unilamellar vesicles. The supernate-protein(s) bind(s) the spin-labeled cholesterol analogue 3-doxyl-5 alpha-cholestane.  相似文献   

4.
Knöpfel M  Zhao L  Garrick MD 《Biochemistry》2005,44(9):3454-3465
Belgrade rats exhibit microcytic, hypochromic anemia and systemic iron deficiency due to a glycine-to-arginine mutation at residue 185 in a metal ion transporter of a divalent metal transporter/divalent cation transporter/solute carrier 11 group A member 2 or 3 (DMT1/DCT1/SLC11A2), a member of the natural-resistance-associated macrophage protein (Nramp) family. By use of rabbit duodenal tissue, a calcein fluorescence assay has previously been developed to assess transport of divalent metal ions across the small-intestinal brush border membrane (BBM). The assay was readily applied here to rat BBM to learn if it detects DMT1 activity. The results demonstrate protein-mediated transport across the BBM of all tested ions: Mn(2+), Fe(2+), and Ni(2+). Transport into BBM vesicles (BBMV) from (b/b) Belgrade rats was below the detection limit. BBMV of +/b origin had substantial activity. The kinetic rate constant for Ni(2+) membrane transport for +/b BBMV was within the range for normal rabbit tissue. Vesicles from +/b basolateral membranes (BLM) showed similar activity to BBMV while b/b BLM vesicles (BLMV) lacked transport activity. Immunoblots using isoform-specific antibodies demonstrated that intestinal levels of b/b DMT1 were increased compared to +/b DMT1, reflecting iron deficiency. Immunoblots on BBMV indicated that lack of activity in b/b vesicles was not due to a failure of DMT1 to localize to the BBMV; an excess of specific isoforms was present compared to +/b BBMV or duodenal extracts. Immunoblots from BLMV also exhibited enrichment in DMT1 isoforms, despite their distinct origin. Immunofluorescent staining of thin sections of b/b and +/b proximal intestines confirmed that DMT1 localized similarly in mutant and control enterocytes and showed that DMT1 isoforms have distinct distributions within intestinal tissue.  相似文献   

5.
Recent studies have documented the importance of Niemann-Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1-/- mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1-/- mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1-/- mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1.  相似文献   

6.
The transfer of labeled neutral glycosphingolipids from sonicated phosphatidylcholine vesicles to erythrocyte ghosts is greatly stimulated by a nonspecific lipid transfer protein purified from beef liver. Globo-tetraglycosylceramide is transferred at a rate 40% of that for dipalmitoylphosphatidylcholine. II3-alpha-N-Acetylneuraminosyl-gangliotetraglycosylceramide is also transferred by the transfer protein, either from sonicated phosphatidylcholine vesicles or from ganglioside micelles to erythrocyte ghosts. The nonspecific lipid transfer protein catalyzes the net transfer of glycosphingolipids from brush border membrane vesicles (from rabbit intestine) to sonicated phosphatidylcholine/cholesterol vesicles.  相似文献   

7.
In the present study, we documented the promising role of thyroid hormones status in animals in modulation of Na+–Pi transport activity in intestinal brush border membrane vesicles (BBMV) which was accompanied with alterations in BBM lipid composition and fluidity. Augmentation of net Pi balance in hyperthyroid (Hyper-T) rats was fraternized with accretion of Pi transport across BBMV isolated from intestine of Hyper-T rats as compared to hypothyroid (Hypo-T) and euthyroid (Eu-T) rats while Na+–Pi transport across BBMV was decreased in Hypo-T rats relative to Eu-T rats. Increment in Na+–Pi transport in intestinal BBMV isolated from Hyper-T rats was manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport system. Furthermore, BBMV lipid composition profile in intestinal BBM from Hyper-T was altered to that of Hypo-T rats and Eu-T rats. The molar ratio of cholesterol/phospholipids was higher in intestinal BBM from Hypo-T rats. Fluorescence anistropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the intestinal BBM of Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats which corroborated with the alteration in membrane fluidity in response to thyroid hormone status of animals. Therefore, thyroid hormone mediated change in membrane fluidity might play an important role in modulating Na+–Pi transport activity of intestinal BBM. (Mol Cell Biochem 278: 195–202, 2005)  相似文献   

8.
Brush border membrane vesicles prepared from rabbit small intestine are essentially free of basolateral membranes and nuclear, mitochondrial, microsomal and cytosolic contaminants. The resulting brush border membrane is unstable due to intrinsic lipases and proteinases. The PC transfer between small unilamellar lipid vesicles or mixed lipid micelles as the donor and the brush border membrane vesicles as the acceptor is protein-mediated. After proteolytic treatment of brush border membrane with papain or proteinase K the PC transfer activity is lost and the kinetics of PC uptake are similar to those measured with erythrocytes under comparable conditions. Evidence is presented to show that the PC transfer activity resides in the apical membrane of the enterocyte and not in the basolateral part of the plasma membrane. Furthermore, the activity is localized on the external surface of the brush border membrane exposed to the aqueous medium with its active centre probably not in direct contact with the lipid bilayer of the membrane. Proteins released from brush border membrane by proteolytic treatment catalyze PC exchange between different populations of small unilamellar vesicles. Furthermore, these protein(s) bind(s) PC forming a PC-protein complex.  相似文献   

9.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

10.
Dexamethasone administered to rats blocks and/or reverses adaptive increases in the rate of Na+-Pi cotransport, and also in the Na+-dependent binding of [14C]-phosphonoformic acid (PFA) by renal brush border membrane (BBM) vesicles elicited by thyroid hormone (T3). In contrast, dexamethasone had no effect on Na+-independent binding of [14C]-phosphonoformic acid, on Na+-dependent transport of D-glucose or on Na+-dependent binding of phlorizin by BBMV which indicates that its inhibitory effect is specific for Na+-Pi cotransport system of BBM. These findings suggest that glucocorticoids antagonize T3-elicited adaptive enhancement of Na+-Pi cotransport in renal proximal tubules by blocking the T3-stimulated de novo synthesis of Na+-Pi symporters and/or their insertion into BBM.  相似文献   

11.
We report the results of experiments which show that cholesterol transfer between membranes cannot proceed by aqueous diffusion, as widely held, but must involve a more complex mechanism. (a) The rate of transfer of [3H]cholesterol from red blood cells was found to vary inversely with the size of the acceptor particle (ghosts, vesicles of ghosts, liposomes, and plasma lipoproteins). (b) The transfer of [3H]cholesterol from red blood cells to ghosts was accelerated by the presence of plasma, even though the plasma competed with the ghosts as an acceptor. (c) The rate of transfer of [3H]cholesterol from red blood cells to ghosts decreased to zero with increasing dilution but was not simply second-order. (d) The cholesterol in retinal rod disc membranes is not at equilibrium with plasma lipoproteins in that disc cholesterol increased when the homogenates were incubated in vitro with plasma. (e) The kinetics of cholesterol transfer cannot be limited by unstirred layer effects since the transfer of lysolecithin in the same system was faster than that of cholesterol by 3 orders of magnitude. The simplest model compatible with all the data suggests a two-step pathway involving a first-order followed by a second-order process. The first step could be a unimolecular activation event, perhaps the movement of the sterol in the donor particle to a more exposed (hydrated) position. In the second step, the activated sterol would be transferred during transient collisions between donor and acceptor particles. When collision is not rate-limiting, the overall process would appear to be simply first-order, hence kinetically indistinguishable from the aqueous diffusion mechanism. The activation-collision model thus not only rationalizes our data but is also consistent with the simpler kinetics previously reported for the transfer of both membrane phospholipids and sterols.  相似文献   

12.
The insect midgut epithelium is composed of columnar, goblet, and regenerative cells. Columnar epithelial cells are the most abundant and have membrane protrusions that form the brush border membrane (BBM) on their apical side. These increase surface area available for the transport of nutrients, but also provide opportunities for interaction with xenobiotics such as pathogens, toxins and host plant allelochemicals. Recent improvements in proteomic and bioinfbrmatics tools provided an opportunity to determine the proteome of the T. ni BBM in unprecedented detail. This study reports the identification of proteins from BBM vesicles (BBMVs) using single dimension polyacrylamide gel elec? trophoresis coupled with multi-dimensional protein identification technology. More than 3000 proteins were associated with the BBMV of which 697 were predicted to possess either a signal peptide, at least one transmembrane domain or a GPI-anchor signal. Of these, bioinfbrmatics analysis and manual curation predicted that 185 may be associated with the BBMV or epithelial cell plasma membrane. These are discussed with respect to their predicted functions, namely digestion, nutrient uptake, cell signaling, development, cell-cell interactions, and other functions. We believe this to be the most detailed proteomic analysis of the lepidopteran midgut epithelium membrane to date, which will provide information to better understand the biochemical, physiological and pathological processes taking place in the larval midgut.  相似文献   

13.
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.  相似文献   

14.
The role of N-linked oligosaccharide side chains in the biogenesis and function of Na+-coupled transporters in renal luminal brush-border membrane (BBM) is not known. We examined the question of how in vivo inhibition by alkaloid swainsonine of alpha-mannosidase, a key enzyme in processing of glycoproteins in the Golgi apparatus, affects Na+/H+ antiport and Na+/Pi symport as well as activities of other transporters and enzymes in rat renal BBM. Administration of swainsonine to thyroparathyroidectomized rats, control or treated with 3,5,3'-triiodothyronine, markedly decreased the rate of Na+/H+ antiport, but had no effect on the rate of Na+/Pi symport across renal BBM vesicles (BBMV). Moreover, administration of swainsonine did not change activities of Na+ gradient, ([extravesicular Na+] greater than [intravesicular Na+])-dependent transport of D-glucose, L-proline, or the amiloride-insensitive 22Na+ uptake by BBMV; the activities of the BBM enzymes alkaline phosphatase, gamma-glutamyltransferase, or leucine aminopeptidase in BBMV were also not changed. The in vitro enzymatic deglycosylation of BBM by incubating freshly isolated BBMV with bacterial endoglycosidase F also resulted in a decreased rate of Na+/H+ antiport, but not Na+-coupled symports of Pi, L-proline, and D-glucose, or the activities of the BBM enzymes were not significantly affected. Similar incubation with endoglycosidase H was without effect on any of these parameters. Both the modification of BBMV glycoproteins by administration fo swainsonine in vivo as well as the in vitro incubation of BBMV with endoglycosidase F resulted in a decrease of the apparent Vmax of Na+/H+ antiport, but did not change the apparent Km of this antiporter for extravesicular Na+ and did not increase H+ conductance of BBM. Taken together, our findings suggest that intact N-linked oligosaccharide chains of the biantennary complex type in renal BBM glycoproteins are required, directly or indirectly, for the transport function of the Na+/H+ antiporter inserted into BBM of renal proximal tubules.  相似文献   

15.
Incubation of placental brush border membrane (BBM) along with sonicated vesicles of exogenous lipids (egg yolk PC) in the presence of phospholipid-transfer protein (PL-TP) showed a decrease in the alkaline phosphatase activity due to the change in the membrane micro-environment, such as fluidity. Effect of substrate concentration was tested by Lineweaver-Burk plot, which showed decreased V(max) and K(M). The effect of temperature was probed by the Arrhenius plot, which showed no change in transition temperature, but a decline in the energy of activation both below and above the transition temperature. The protein-catalyzed transfer of phospholipid from the donor unilamellar vesicles resulted in a substantial increase in the BBM phospholipid and a net decrease in cholesterol/phospholipid molar ratio. The change in membrane fluidity was assessed by translational as well as rotational diffusion of membrane extrinsic fluorescent probes, pyrene and diphenyl-hexatriene. An increased lateral mobility was recorded by the increased pyrene excimer formation. A decrease in fluorescent polarization of diphenyl-hexatriene was observed, which led to the decrease in fluorescence anisotropy and order parameter, and therefore, an increase in membrane fluidity (rotational diffusion). Mean anisotropy parameter was also decreased in the presence of PL-TP. Thus, the placental BBM alkaline phosphatase activity showed a distinct lipid dependence which may have important physiological consequences.  相似文献   

16.
During the preparation of a suspension of dog kidney proximal tubules by collagenase treatment, an uptake of FITC-albumin was demonstrated. This process is attributed to the activation of receptor-mediated endocytosis leading to the appearance of FITC-albumin into intracellular vesicular structures. The isolation of brush border membrane vesicles (BBMV) from the dog kidney proximal tubules in suspension by the magnesium precipitation technique leads to the copurification of a large population of endosomes. These endosomes were separated from BBM vesicles by a technique involving wheat-germ agglutinin. The enrichment in BBM markers and in bafilomycin-sensitive ATPase activity was comparable in endosomes and BBM vesicles. However, the acridine orange acidification assay showed a V-type ATPase-dependent acidification in endosomes but not in BBMV, demonstrating a different orientation of the proton pumps in these structures. SDS-PAGE analysis also showed significant differences in protein pattern of vesicles and endosomes. The most notable difference was the presence of 42–44 kDa and 20–24 kDa proteins in BBMV and their complete absence in endosomes. Western blot analysis identified these proteins as actin and RhoA, among other small proteins, respectively. Western blot experiments also demonstrated a different distribution of β-COP, β-adaptin, and RhoGDI in vesicles and endosomes. The morphological aspect (electron microscopy) and sedimentation of endosomes in a 50% Percoll gradient identified these structures as ``heavy endosomes' (buoyant density D= 1.036 g/ml). Flow cytometry analysis of heavy endosomes purified from tubules isolated in presence of FITC-albumin showed the presence of FITC-albumin in up to 92% of these intracellular organelles. Western blot analysis using anti-FITC and anti-collagenase antibodies allowed quantification of the FITC-albumin and collagenase A in the purified endosomes. Our results indicate that heavy endosomes are formed during the preparation of the proximal tubules following activation of receptor-mediated endocytosis, probably by soluble proteins. The suspension of tubules thus offers a experimental tool to study the protein reabsorption and traffic of endosomal vesicles in the proximal tubules. Received: 13 July 1995/Revised: 8 May 1996  相似文献   

17.
The effect of surface curvature on the spontaneous movement of cholesterol between membranes was investigated by measuring the rates of cholesterol transfer from donor vesicles of various sizes to a common acceptor vesicle. Donor vesicles of size in the range 40-240 nm were prepared by extruding multilamellar dispersions through polycarbonate filters of different pore sizes under pressure. The smallest donor vesicle and the acceptor vesicles were obtained by the normal sonication procedures. The rate of cholesterol transfer, as measured by the movement of [3H]cholesterol, decreases with increasing size of the donor vesicle in an almost linear fashion. The extrapolation of the results gave a half-time (t1/2) of 16-20 h of the desorption of cholesterol from a planar bilayer, and this can be considered as a reference value for most cellular membranes which are characterized by very low curvatures. Our earlier studies have shown that the t1/2 for cholesterol efflux is influenced by the presence of gangliosides and phosphatidylethanolamine, and the asymmetric distribution of these lipids in the plasma membrane could partially account for the large difference in the rates of cholesterol movement from the two sides of the plasma membrane. The small differences in rates arising from asymmetric distribution will be magnified by the longer t1/2 obtained here for membranes of low curvatures, so that the large difference in rates might be a coupled effect of lipid asymmetry and low curvature of the plasma membrane. This, in turn, may have a role in maintaining the large differences in cholesterol/phospholipid molar ratios observed between plasma membrane and intracellular membranes.  相似文献   

18.
A W Scotto  D Zakim 《Biochemistry》1986,25(7):1555-1561
The presence of cholesterol in small unilamellar vesicles (ULV) of dimyristoylphosphatidylcholine (DMPC) catalyzes fusion of the vesicles at temperatures below the upper limit for the gel to liquid-crystalline phase transition of the DMPC. The extent to which ULV grow depends on the concentration of cholesterol in the vesicles and on temperature. Maximum growth occurs at 21 degrees C. It decreases as the temperature is lowered below 21 degrees C. Growth does not occur at temperatures above the phase transition. In addition, the presence of cholesterol in ULV of DMPC catalyzes the insertion of integral membrane proteins into the vesicles. Thus, bacteriorhodopsin from Halobacterium halobrium, UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, and cytochrome oxidase from beef heart mitochondria formed stable lipid-protein complexes spontaneously when added to ULV containing cholesterol at temperatures under which these vesicles would fuse. Incorporation of these proteins into the ULV of DMPC did not occur in the absence of cholesterol or in the presence of cholesterol when the temperature of the system was above that for the phase transition. It appears that cholesterol lowers the energy barrier for fusion of ULV of DMPC and for insertion of integral membrane proteins into these bilayers. Studies with bacteriorhodopsin suggest that the energy barrier for insertion of proteins into ULV containing cholesterol is smaller than the energy barrier for fusion of the ULV with each other.  相似文献   

19.
The steroidogenic acute regulatory protein (StAR) mediates the acute stimulation of steroid synthesis by tropic hormones in steroidogenic cells. StAR interacts with the outer mitochondrial membrane and facilitates the rate-limiting transfer of cholesterol to the inner mitochondrial membrane where cytochrome P-450scc converts this cholesterol into pregnenolone. We tested the ability of N-62 StAR to transfer cholesterol from donor vesicles containing cholesterol but no cytochrome P-450scc to acceptor vesicles containing P-450scc but no cholesterol, using P-450scc activity as a reporter of the cholesterol content of synthetic phospholipid vesicles. N-62 StAR stimulated P-450scc activity in acceptor vesicles 5-10-fold following the addition of donor vesicles. Transfer of cholesterol to acceptor vesicles was rapid and sufficient to maintain a linear rate of pregnenolone synthesis for 10 min. The effect of N-62 StAR in stimulating P-450scc activity was specific for cholesterol transfer and was not due to vesicle fusion or P-450scc exchange between vesicles. Maximum stimulation of P-450scc activity in acceptor vesicles required preincubation of N-62 StAR with phospholipid vesicles prior to adding donor vesicles. The amount of N-62 StAR causing half-maximum stimulation of P-450scc activity in acceptor vesicles was 1.9 microm. Half-maximum stimulation required more than a 10-fold higher concentration of R182L N-62 StAR, a mutant associated with congenital lipoid adrenal hyperplasia. N-62 StAR-mediated transfer of cholesterol between vesicles showed low dependence on the cholesterol concentration in the donor vesicles. Thus StAR can transfer cholesterol between synthetic membranes without other protein components found in mitochondria.  相似文献   

20.
Previous studies have shown that administration of synthetic atrial natriuretic factor (ANF, 101-126) decreases sodium-dependent phosphate transport across renal brush border membrane vesicles (BBMV) in rats fed a normal or low phosphate diet. In the present study, infusion of rat ANF (atriopeptin III (ANP-III), 103-126 rat ANF) to rats fed a normal phosphate diet caused natriuretic and phosphaturic effects similar to those of ANF (101-126), but unlike ANF (101-126) did not increase the glomerular filtration rate. The effect of ANP-III infusion on sodium-dependent transport of phosphate was also determined in BBM vesicles isolated from the superficial cortex (BBMV-SC) and juxtamedullary cortex (BBMV-JM). The results indicate that ANP-III decreases phosphate transport across BBMV-SC and BBMV-JM similarly (20-24%). However, it had no effect on sodium-dependent transport of proline in these vesicles. The infusion of ANP-III to rats fed a normal phosphate diet inhibits phosphate uptake both in BBMV-SC and BBMV-JM and causes phosphaturia without increments in glomerular filtration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号