首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

2.
We evaluated the capacity of NK cells to influence expansion of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) in response to microbial Ags, using Mycobacterium tuberculosis as a model. We previously found that Tregs expand when CD4(+) cells and monocytes are exposed to M. tuberculosis. Addition of NK cells that were activated by monokines (IL-12, IL-15, and IL-18) or by exposure to M. tuberculosis-stimulated monocytes reduced Treg expansion in response to M. tuberculosis. NK cell inhibition of Treg expansion was not mediated through IFN-gamma. Activated NK cells lysed expanded, but not freshly isolated Tregs. Although monokines increased NK cell expression of the activating receptors NKp46, NKG2D, 2B4, CD16, and DNAM-1, only anti-NKG2D and anti-NKp46 inhibited NK cell lysis of expanded Tregs. Of five NKG2D ligands, only UL16-binding protein 1 (ULBP1) was up-regulated on M. tuberculosis-expanded Tregs, and anti-ULBP1 inhibited NK cell lysis of expanded Tregs. M. tuberculosis-stimulated monocytes activated NK cells to lyse expanded Tregs, and this was also inhibited by anti-NKG2D and anti-ULBP1, confirming the physiological relevance of this effect. Our study identifies a potential new role for NK cells in maintaining the delicate balance between the regulatory and effector arms of the immune response.  相似文献   

3.
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.  相似文献   

4.
Denileukin diftitox (DD), a fusion protein comprising IL-2 and diphtheria toxin, was initially expected to enhance antitumor immunity by selectively eliminating regulatory T cells (Tregs) displaying the high-affinity IL-2R (α-β-γ trimers). Although DD was shown to deplete some Tregs in primates, its effects on NK cells (CD16(+)CD8(+)NKG2A(+)CD3(-)), which constitutively express the intermediate-affinity IL-2R (β-γ dimers) and play a critical role in antitumor immunity, are still unknown. To address this question, cynomolgus monkeys were injected i.v. with two doses of DD (8 or 18 μg/kg). This treatment resulted in a rapid, but short-term, reduction in detectable peripheral blood resting Tregs (CD4(+)CD45RA(+)Foxp3(+)) and a transient increase in the number of activated Tregs (CD4(+)CD45RA(-)Foxp3(high)), followed by their partial depletion (50-60%). In contrast, all NK cells were deleted immediately and durably after DD administration. This difference was not due to a higher binding or internalization of DD by NK cells compared with Tregs. Coadministration of DD with IL-15, which binds to IL-2Rβ-γ, abrogated DD-induced NK cell deletion in vitro and in vivo, whereas it did not affect Treg elimination. Taken together, these results show that DD exerts a potent cytotoxic effect on NK cells, a phenomenon that might impair its antitumoral properties. However, coadministration of IL-15 with DD could alleviate this problem by selectively protecting potentially oncolytic NK cells, while allowing the depletion of immunosuppressive Tregs in cancer patients.  相似文献   

5.
Combined immunotherapy with cyclophosphamide (Cy) and IL-12, but not IL-12 alone, stimulates eradication of a large established solid tumor (20 mm), MCA207, a methylcholanthrene-induced murine sarcoma. In these studies we demonstrate that NK1.1(+) cells and CD1d-dependent NK T cells each play important yet distinct roles in regression of a large tumor in response to Cy and IL-12, and we define a novel NK T cell subset, selectively increased by this treatment. Mice depleted of NK1.1(+) cells demonstrated more rapid initial tumor growth and prolonged tumor regression following treatment, but tumors were eventually eradicated. In contrast, initial tumor regression following therapy was unimpaired in CD1d(-/-) mice, which are deficient in most NK T cells, but tumors recurred. No tumor regression occurred following Cy and IL-12 therapy in CD1d(-/-) mice that were depleted of NK1.1(+) cells. We found that Cy and IL-12 induced the selective increase in liver and spleen lymphocytes of a unique NK T subpopulation (DX5(+)NK1.1(-)CD3(+)). These cells were not induced by treatment in CD1d(-/-) mice. Our studies demonstrate a contribution of both NK and NK T cells to the Cy- and IL-12-stimulated anti-tumor response. We describe the selective induction of a distinct NK T cell subset by Cy and IL-12 therapy, not seen following IL-12 therapy alone, which we suggest may contribute to the successful anti-tumor response induced by this immunotherapeutic regimen.  相似文献   

6.
Peritoneal resident cells of mice normally contain small populations of NK cells and NK1.1(+) alphabetaT cells. These populations increased after either 3LL or EL4 tumor inoculations into the peritoneal cavity. In vivo depletion of NK cell alone by anti-asialo GM1 (ASGM1) Ab significantly decreased survival time of tumor-injected mice, while depletion of both NK cells and NK1.1(+) T cells by anti-NK 1.1 Ab greatly shortened mouse survival time. NK1. 1(+) T cells in peritoneal cavity consist of a larger proportion of double-negative T cells and smaller populations of CD4(+) T cells and Vbeta8(+) T cells compared with liver NK1.1(+) T cells and normally lack Vbeta2(+) T cells. Tumor inoculation induced rapid IL-12 and IFN-gamma mRNA in tumor-infiltrating mononuclear cells (TIM). Although anti-NK1 Ab pretreatment in vivo abrogated IFN-gamma mRNA expression and IFN-gamma production of TIM, NK cell depletion alone by anti-ASGM1 Ab pretreatment retained IFN-gamma mRNA expression and partly inhibited IFN-gamma production of TIM. Peritoneal NK cells as well as NK1.1(+) T cells but not NK1.1(-) T cells of 3LL cell- or EL4 cell-injected mice showed cytotoxicities against the same tumor cells. Further, either anti-IL-12 Ab or anti-IFN-gamma Ab ip injection significantly shortened EL4 cell-inoculated mouse survival time. Our findings suggest that peritoneal macrophages activated by tumors produce IL-12 which activates NK cells and NK1.1(+) T cells to produce IFN-gamma and both NK cells and NK1.1(+) T cells are important in suppressing the growth of the intraperitoneal tumors.  相似文献   

7.
Natural killer cells are important cytolytic cells in innate immunity. We have characterized human NK cells of spleen, lymph nodes, and tonsils. More than 95% of peripheral blood and 85% of spleen NK cells are CD56(dim)CD16(+) and express perforin, the natural cytotoxicity receptors (NCRs) NKp30 and NKp46, as well as in part killer cell Ig-like receptors (KIRs). In contrast, NK cells in lymph nodes have mainly a CD56(bright)CD16(-) phenotype and lack perforin. In addition, they lack KIRs and all NCR expression, except low levels of NKp46. The NK cells of tonsils also lack perforin, KIRs, NKp30, and CD16, but partially express NKp44 and NKp46. Upon IL-2 stimulation, however, lymph node and tonsilar NK cells up-regulate NCRs, express perforin, and acquire cytolytic activity for NK-sensitive target cells. In addition, they express CD16 and KIRs upon IL-2 activation, and therefore display a phenotype similar to peripheral blood NK cells. We hypothesize that IL-2 can mobilize the NK cells of secondary lymphoid tissues to mediate natural killing during immune responses. Because lymph nodes harbor 40% and peripheral blood only 2% of all lymphocytes in humans, this newly characterized perforin(-) NK cell compartment in lymph nodes and related tissues probably outnumbers perforin(+) NK cells. These results also suggest secondary lymphoid organs as a possible site of NK cell differentiation and self-tolerance acquisition.  相似文献   

8.
T/NK progenitors are present in the thymus; however, the thymus predominantly promotes T cell development. In this study, we demonstrated that human thymic epithelial cells (TEC) inhibit NK cell development. Most ex vivo human thymocytes express CD1a, indicating that thymic progenitors are predominantly committed to the T cell lineage. In contrast, the CD1a(-)CD3(-)CD56(+) NK population comprises only 0.2% (n = 7) of thymocytes. However, we observed increases in the percentage (20- to 25-fold) and absolute number (13- to 71-fold) of NK cells when thymocytes were cultured with mixtures of either IL-2, IL-7, and stem cell factor or IL-15, IL-7, and stem cell factor. TEC, when present in the cultures, inhibited the increases in the percentage (3- to 10-fold) and absolute number (3- to 25-fold) of NK cells. Furthermore, we show that TEC-derived soluble factors inhibit generation of NK-CFU and inhibit IL15- or IL2-driven NK cell differentiation from thymic CD34(+) triple-negative thymocytes. The inhibitory activity was found to be associated with a 8,000- to 30,000 Da fraction. Thus, our data demonstrate that TEC inhibit NK cell development from T/NK CD34(+) triple negative progenitors via soluble factor(s), suggesting that the human thymic microenvironment not only actively promotes T cell maturation but also controls the development of non-T lineage cells such as the NK lineage.  相似文献   

9.
NK cells and dendritic cells (DCs) are both important in the innate host defense. However, the role of DCs in NK cell-mediated cytotoxicity is unclear. In this study, we designed two culture systems in which human cord blood CD34(+) cells from the same donor were induced to generate NK cells and DCs, respectively. Coculture of the NK cells with DCs resulted in significant enhancement of NK cell cytotoxicity and IFN-gamma production. However, NK cell cytotoxicity and IFN-gamma production were not increased when NK cells and DCs were grown together separated by a transwell membrane. Functional studies demonstrated that 1) concanamycin A, a selective inhibitor of perforin/granzyme B-based cytolysis, blocked DC-stimulated NK cytotoxicity against K562 cells; and 2) neutralizing mAb against Fas ligand (FasL) significantly reduced DC-stimulated NK cytotoxicity against Fas-positive Jurkat cells. In addition, a marked increase of FasL mRNA and FasL protein expression was observed in DC-stimulated NK cells. The addition of neutralizing mAb against IL-18 and IL-12 significantly suppressed DC-stimulated NK cell cytotoxicity. Neutralizing IFN-gamma Ab almost completely inhibited NK cell cytotoxicity against Jurkat cells. These observations suggest that DCs enhance NK cell cytotoxicity by up-regulating both perforin/granzyme B- and FasL/Fas-based pathways. Direct interaction between DCs and NK cells is necessary for DC-mediated enhancement of NK cell cytotoxicity. Furthermore, DC-derived IL-18 and IL-12 were involved in the up-regulation of NK cell cytotoxicity, and endogenous IFN-gamma production plays an important role in Fas-mediated cytotoxicity.  相似文献   

10.
To delineate factors involved in NK cell development, we established an in vitro system in which lineage marker (Lin)-, c-kit+, Sca2+ bone marrow cells differentiate into lytic NK1.1+ but Ly49- cells upon culture in IL-7, stem cell factor (SCF), and flt3 ligand (flt3L), followed by IL-15 alone. A comparison of the ability of IL-7, SCF, and flt3L to generate IL-15-responsive precursors suggested that NK progenitors express the receptor for flt3L. In support of this, when Lin-, c-kit+, flt3+ or Lin-, c-kit+, flt3- progenitors were utilized, 3-fold more NK cells arose from the flt3+ than from the flt3- progenitors. Furthermore, NK cells that arose from flt3- progenitors showed an immature NK1.1dim, CD2-, c-kit+ phenotype as compared with the more mature NK1.1bright, CD2+/-, c-kit- phenotype displayed by NK cells derived from flt3+ progenitors. Both progenitors, however, gave rise to NK cells that were Ly49 negative. To test the hypothesis that additional marrow-derived signals are necessary for Ly49 expression on developing NK cells, flt3+ progenitors were grown in IL-7, SCF, and flt3L followed by culture with IL-15 and a marrow-derived stromal cell line. Expression of Ly49 molecules, including those of which the MHC class I ligands were expressed on the stromal or progenitor cells, as well as others of which the known ligands were absent, was induced within 6-13 days. Thus, we have established an in vitro system in which Ly49 expression on developing NK cells can be analyzed and possibly experimentally manipulated.  相似文献   

11.
12.
Immunostimulatory oligodeoxynucleotides (ODN) containing the CpG motif are being tested as immune adjuvants in many disease settings. Of the human PBMC examined, plasmacytoid dendritic cells (pDC) are a major source of type I IFN upon stimulation with CpG ODN. IFNs have numerous immunostimulatory effects, including the induction of TNF-related apoptosis-inducing ligand (TRAIL)/Apo-2L on monocytes, NK cells, and T cells. Importantly, IFN has also been linked to antitumor responses. Thus, we tested whether CpG ODN stimulation of PBMC led to TRAIL/Apo-2L-induced tumor cell death. When PBMC were stimulated with CpG ODN, TRAIL/Apo-2L-dependent tumor cell death was observed. Further examination of CpG ODN-stimulated PBMC revealed that TRAIL/Apo-2L expression was limited to CD14(+) cells, which, when depleted, led to a loss of the TRAIL/Apo-2L-mediated tumor cell killing. Moreover, pDC depletion also abolished the TRAIL/Apo-2L-mediated killing of tumor cell targets. Analysis of the pDC showed IFN-alpha production after CpG ODN stimulation. Finally, inclusion of neutralizing IFN-alpha antiserum with the PBMC during CpG ODN stimulation abrogated TRAIL/Apo-2L-mediated tumor cell killing. These results define a mechanism by which CpG ODN induces TRAIL/Apo-2L-dependent killing of tumor cells by CD14(+) PBMC, in which CpG ODN-activated pDC produce IFN-alpha that stimulates CD14(+) PBMC to express functional TRAIL/Apo-2L.  相似文献   

13.
The ability of NK cells to kill tumor cells is controlled by a balance between activating and inhibitory signals transduced by distinct receptors. In murine tumor models, the costimulatory molecule B7.1 not only acts as a positive trigger for NK-mediated cytotoxicity but can also overcome negative signaling transduced by MHC class I molecules. In this study, we have evaluated the potential of human B7.1-CD28 interaction as an activating trigger for human blood NK cells. Using multiparameter flow cytometric analysis and a panel of different CD28 mAbs, we show that human peripheral blood NK cells (defined by CD56+, CD16+, and CD3- surface expression) express the CD28 costimulatory receptor, with its detection totally dependent on the mAb used. In addition, the level of CD28 varies among individuals and on different NK cell lines, irrespective of CD28 steady-state mRNA levels. By performing Ab binding studies on T cells, our data strongly suggest that binding of two of the anti-CD28 Abs (clones 9.3 and CD28.2) is to a different epitope to that recognized by clones L293 and YTH913.12, which is perhaps modified in the CD28 molecule expressed by the NK cells. We also show that B7.1 enhances the NK-mediated lysis of NK-sensitive but not of NK-resistant tumor cells and that this increased lysis is dependent on CD28-B7 interactions as shown by the ability of Abs to block this lysis. Coculture of the B7.1-positive NK-sensitive cells also led to the activation of the NK cells, as determined by the expression of CD69, CD25, and HLA class II.  相似文献   

14.
15.
In mice lacking IL-15, NK cell development is arrested at immature stages, providing an opportunity to investigate the earliest developing NK cells that would respond to IL-15. We show in this study that immature NK cells were present in the spleen as well as bone marrow (BM) and contained IL-15-high-responder cells. Thus, mature NK cells were generated more efficiently from IL-15(-/-) than from control donor cells in radiation BM chimeras, and the rate of IL-15-induced cell division in vitro was higher in NK cells in the spleen and BM from IL-15(-/-) mice than in those from wild-type mice. Phenotypically, NK cells developed in IL-15(-/-) mice up to the minor but discrete CD11b(-)CD27(+)DX5(hi)CD51(dull)CD127(dull)CD122(hi) stage, which contained the majority of Ly49G2(+) and D(+) NK cells both in the spleen and BM. Even among wild-type splenic NK cells, IL-15-induced proliferation was most prominent in CD11b(-)DX5(hi) cells. Notably, IL-15-mediated preferential expansion (but not conversion from Ly49(-) cells) of Ly49(+) NK cells was observed in vitro only for NK cells in the spleen. These observations indicated the uneven distribution of NK cells of different developing stages with variable IL-15 responsiveness in these lymphoid organs. Immature NK cells in the spleen may contribute, as auxiliaries to those in BM, to the mature NK cell compartment through IL-15-driven extramarrow expansion under steady-state or inflammatory conditions.  相似文献   

16.
Activation of natural killer (NK) cells with interleukin-2 (IL-2) and IL-12 leads to an enhanced lysis of tumour cells. We investigated the ability of NK cells, with or without prior activation, to lyse a variety of small-cell lung cancer (SCLC) target cells. Specific lysis was measured with a fluorometric assay for NK-cell-mediated cytotoxicity: target cells were labelled with 3,3′-dioctadecyloxacarbocyanine, a green membrane dye. After co-incubation with NK cells, dead target cells were stained with propidium iodide, a red DNA dye that only penetrates dead cells. Of all eight SCLC cell lines tested, three were susceptible to lysis by non-activated NK cells, three were only susceptible to lysis by NK cells activated with IL-2 and IL-12 and two were not even susceptible to lysis by activated NK cells. The differences in target cell susceptibility showed no correlation with the expression of MHC-I on the surface of the target cells or with the expression of the adhesion molecules CD50, CD54, CD58 or CD102. Comparing the kinetics of the lysis of one SCLC cell line sensitive to non-activated NK cells and one sensitive only to activated NK cells, we found that maximum lysis of the former was obtained after 1 h, whereas significant lysis of the latter was only obtained after 4 h of incubation. This might be due to different mechanisms engaged in target cell lysis. Received: 23 December 1998 / Accepted: 8 April 1999  相似文献   

17.
NK cells are an important component of the innate immune system that can also interact with B cells in a mutually productive manner. We have previously shown that activated B cells can induce NK cells to up-regulate their secretion of IFN-gamma. In this study, we show that B cells, and, particularly, marginal zone B cells, can, in addition, induce NK cells via direct cell-cell interactions to express mRNA encoding the Th2 cytokine IL-13. The induction of NK cell IL-13 mRNA expression requires the ligation of the CD244 receptor by the CD48 ligand on B cells via signaling pathways that depend upon expression of the X-linked lymphoproliferative disease gene product, SH2D1A/DSHP/SAP (SLAM-associated protein, or SAP) in NK cells. Thus, the positive signals attributed to the B cell activation of CD244 on murine NK cells appears to be more similar to the activity of CD244 on human cells. The induction of IL-13 mRNA by B cells may account for the effect of NK cells on the generation of Th2-type responses in the presence of some adjuvants.  相似文献   

18.
The transmembrane protein tyrosine phosphatase CD45 is differentially required for the development and function of B, T, and NK cells, with mice partially deficient for CD45 having a significant inhibition of T cell, but not NK or B cell, development. CD45-mediated signaling has also been implicated in the development of intrathymic, but not extrathymic, intestinal intraepithelial T lymphocytes (iIELs) in the CD45ex6(-/-) mouse. As NK1.1(+) CD3(+) (NK-T) cells can also develop through extrathymic pathways, we have investigated the role of CD45 in NK-T cell development. In mice with a complete absence of CD45 expression (CD45ex9(-/-)) the NK-T cell population was maintained in the iIEL compartment, but not in the spleen. Functionally, CD45-deficient NK-T cells were unable to secrete IL-4 in response to TCR-mediated signals, a phenotype similar to that of CD45-deficient iIELs, in which in vitro cytokine production was dramatically reduced. Using the CD45ex9(-/-) mouse strain, we have also demonstrated that only one distinct population of NK-T cells (CD8(+)) appears to develop normally in the absence of CD45. Interestingly, although an increase in cytotoxic NK cells is seen in the absence of CD45, these NK calls are functionally unable to secrete IFN-gamma. In the absence of CD45, a significant population of extrathymically derived CD8alphaalpha(+) iIELs is also maintained. These results demonstrate that in contrast to conventional T cells, CD45 is not required during the development of CD8(+) NK-T cells, NK cells, or CD8alphaalpha(+) iIELs, but is essential for TCR-mediated function and cytokine production.  相似文献   

19.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

20.
Aberrant expression of IFN-gamma has been demonstrated to cause a wide variety of alterations in cell function and development. Previously we reported that constitutive expression of IFN-gamma in bone marrow (BM) and thymus results in a total absence of B cells and a substantial decrease in the number of hematopoietic progenitor cells. In this study, we demonstrate a severe deficiency of NK1.1(+)CD3(-) cells in this transgenic mouse model. Compared with normal control littermates, we found a pronounced reduction of NK cells in IFN-gamma transgenic mouse spleen and liver despite maintenance of normal function. In addition, we observed a reduced number of BM cells in the IFN-gamma transgenic mouse despite normal expression of hematopoietic growth factors in the BM. Interestingly, these cells were less responsive to stem cell factor (SCF) despite c-kit expression on hematopoietic stem cells (HSCs). We observed that addition of exogenous IFN-gamma inhibited proliferation of HSCs and differentiation of NK precursors from HSCs in normal mice in response to SCF, IL-7, fms-like tyrosine kinase 3 ligand, and IL-15. Furthermore, we found that HSCs express the IFN-gammaRalpha subunit and undergo apoptosis in response to exogenous IFN-gamma. Thus, we have demonstrated the occurrence of a severe deficiency of NK cells and lower numbers of BM cells in an IFN-gamma transgenic mouse model. Furthermore, because exogenous IFN-gamma affects the responsiveness to hematopoietic growth factors such as SCF in vitro, our results indicate that chronic expression of IFN-gamma in vivo leads to widespread immune system defects, including alterations in NK cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号