首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Human glutathione transferase (hGST) A1-1 and a lysine mutant (A216K) can both be rapidly and site-specifically acylated on Y9 and K216, respectively, using a range of thiolesters of glutathione (GS-thiolesters) as modifying reagents. The present investigation was aimed at developing a method with which to deliver a fluorescent acyl group from a solid support under conditions compatible with standard protein purification schemes. A number of fluorescent GS-thiolesters with modified peptide backbones were therefore prepared and tested for reactivity toward hGST A1-1 and the A216K mutant. Substitutions at the alpha-NH2 part of the glutathione backbone were not tolerated by the proteins. However, two fluorescent reagents that carry a biotin moiety at the C-terminal part of glutathione were found through MALDI-MS experiments to react in solution with Y9 of the wild-type protein and one reagent with K216 of A216K. The reaction can take place in the presence of glutathione and even in a crude E. coli lysate of cells expressing A216K. Delivery of the fluorescent group to Y9 or K216 was possible using NeutrAvidin (NA) beads that had been preincubated with biotinylated reagent. Alternatively, excess reagent can be removed by a brief incubation with NA beads. We have thus now developed a system for protein labeling with easy removal of excess and used up low-molecular weight reagent. This strategy can conceivably be utilized in future protein purification and labeling experiments.  相似文献   

2.
3.
1. Adenosine deaminase was inactivated by 9-(4-bromoacetamidobenzyl)-adenine (I) and 9-(2-bromoacetamidobenzyl)adenine (II), two affinity labels. 2. The stoichiometry of the reaction with reagent II is reported: 1 mol reagent is bound per mol inactive enzyme. Amino acid analysis of the 6 N HCl hydrolyzate of the inactive enzyme identified CM-histidine as the main alkylation product. This is the first evidence of the presence of a histidine in the active site region. 3. The alkylation rate and involved amino acid residues were studied for both reagents I and II, at pH 8 and 5.5. The particular reactivity of a lysine near or in the active site is discussed.  相似文献   

4.
5.
Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164)) is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS) polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185)) was identified as the only topological equivalent of PCNA(K164). To investigate a potential role of posttranslational modifications of Rad1(K185) in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R) allele. The Rad1(K185) residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185) is not a functional counterpart of PCNA(K164).  相似文献   

6.
R Takashi  A Muhlrad  J Botts 《Biochemistry》1982,21(22):5661-5668
Fluorescence energy transfer was used to examine the spatial proximity between two key side chains in myosin subfragment 1 (S-1), viz., the reactive thiol (SH1) located on the C-terminal 20K tryptic fragment and the reactive lysyl (RLR) on the N-terminal 27K tryptic fragment of S-1 heavy chain. S-1 was specifically labeled at SH1 with an energy donor, N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS), and at RLR with an energy acceptor, 2,4,6,-trinitrobenzenesulfonate (TNBS). Prior blocking of SH1 with AEDANS increased the pK of RLR from 9.04 to 9.42. Trinitrophenylation of SH1-blocked S-1 was about 50% slower and sharply reduced the Ca2+ ATPase activity. Reciprocally, blocking of RLR with TNBS slowed the rate of reaction of SH1 and AEDANS by 40-60%. Addition of the second label does not grossly alter the conformation resulting from the first label. S-1 labeled at RLR with TNBS and at SH1 with optically inert iodoacetamide shows the same TNP difference spectrum +/- MgADP (lambda min 365 nm) as S-1 with S 1 free. Also, S-1 labeled at SH1 with AEDANS and at RLR with an optically inert methyl group shows the same AEDANS emission spectrum (lambda em max 475 nm), excited-state lifetime (tau = 20.3 ns) and rotational correlation time (phi = 106 ns) as S-1 with RLR free. When the decrease of either the quantum yield or the excited-state lifetime of the donor in the absence and presence of the acceptor was measured, the energy transfer efficiency was found to be 70%. The apparent interchromophore distance was calculated to be 2.6 nm through the use of the F?rster equation with an uncertainty of less than 12%.  相似文献   

7.
Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-β-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.  相似文献   

8.
The cyclooxygenase (COX) enzyme isoforms COX-1 and COX-2 catalyze the main step in the generation of prostanoids that mediate major physiological functions. Whereas COX-1 is a ubiquitously expressed stable protein, COX-2 is transiently upregulated in many pathologies and is often associated with a poor prognostic outcome. We have recently shown that an interaction of COX-2 with the prostaglandin EP1 receptor accelerates its degradation via a mechanism that augments its level of ubiquitination. Here we show that the sensitivity of both COX-1 and COX-2 to EP1 is altered upon modification of one lysine residue. A point mutation of lysine to-arginine in position 432 of COX-2 (K432R) yields an enzyme with decreased sensitivity to EP1-mediated degradation. In contrast, insertion of a putative ubiquitination site into the corresponding position of COX-1 (H446K′) yields an enzyme with higher levels of ubiquitination and reduced expression. Furthermore, compared to wild type COX-1, H446K′ is significantly more sensitive to downregulation by EP1. Together these data suggest that distinctive ubiquitination of COX-1 and COX-2 may be responsible for their different sensitivity to EP1-mediated degradation.  相似文献   

9.
MRP1 (multidrug resistance protein 1) couples ATP binding/hydrolysis at its two non-equivalent NBDs (nucleotide-binding domains) with solute transport. Some of the NBD1 mutants, such as W653C, decreased affinity for ATP at the mutated site, but increased the rate of ATP-dependent solute transport. In contrast, other NBD1 mutants, such as K684L, had decreased ATP binding and rate of solute transport. We now report that mutations of the Walker A lysine residue, K684L and K1333L, significantly alter the tertiary structure of the protein. Due to elimination of the positively charged group and conformational alterations, the K684L mutation greatly decreases the affinity for ATP at the mutated NBD1 and affects ATP binding at the unmutated NBD2. Although K684L-mutated NBD1 can bind ATP at higher concentrations, the bound nucleotide at that site is not efficiently hydrolysed. All these alterations result in decreased ATP-dependent solute transport to approx. 40% of the wild-type. In contrast, the K1333L mutation affects ATP binding and hydrolysis at the mutated NBD2 only, leading to decreased ATP-dependent solute transport to approx. 11% of the wild-type. Consistent with their relative transport activities, the amount of vincristine accumulated in cells is in the order of K1333L> or =CFTR (cystic fibrosis transmembrane conductance regulator)>K684L>wild-type MRP1. Although these mutants retain partial solute transport activities, the cells expressing them are not multidrug-resistant owing to inefficient export of the anticancer drugs by these mutants. This indicates that even partial inhibition of transport activity of MRP1 can reverse the multidrug resistance caused by this drug transporter.  相似文献   

10.
11.
12.
We have studied the structure of actin by measuring the relative reactivities of lysines with acetic anhydride using a competitive labeling procedure comparing monomeric globular actin. monomeric actin in the presence of salt, and filamentous actin polymerized in 100 mM NaCl and 100 mM NaCl, 2 mM MgCl2. We have identified 12 of the 19 lysines: 18, 50, 61, 68, 113, 191, 237, 290, 315, 325, 327, and 358. In all conditions, Lys (325, 327) is the most reactive. In globular actin, Lys 18, 191, 290, 314. and 358 are less than 20% as reactive as Lys (325, 327); the remaining have intermediate reactivities. On polymerization in the presence of NaCl and Mg2+, lysines 50, 61, 68, 113, and 290 become less reactive relative to Lys (325, 327). The changes in Lys 50, 61, and 113 are due largely to the polymerization event whereas those in Lys 68 and 290 appear to be an effect of Mg2+. Lys 18, 191, and 358 increase in relative reactivity when cation is added to the monomer and then become less reactive in the polymer, showing no large overall change in reactivity relative to the monomer in the absence of salt. Lysines that are reduced in reactivity upon polymerization indicate possible contact regions between actin monomers in the filament in the NH2-terminal third of the protein.  相似文献   

13.
The cDNA encoding full-length single chain urokinase-type plasminogen activator (scu-PA) was cloned and sequenced, and the recombinant scu-PA (rscu-PA) was expressed in Chinese hamster ovary cells. Two mutants, constructed by in vitro site-specific mutagenesis of Lys158 in rscu-PA to Gly158 (rscu-PA-Gly158) or to Glu158 (rscu-PA-Glu158), were also expressed in Chinese hamster ovary cells. Wild type and mutant rscu-PAs were purified to homogeneity by immunoadsorption on an insolubilized monoclonal antibody raised against natural scu-PA (nscu-PA), followed by gel filtration. The specific activity of the mutant scu-PAs on fibrin plates is very low (less than 1,000 IU/mg) compared to that of the wild type rscu-PA (44,000 IU/mg). The mutants, in contrast to the wild type rscu-PA, are not converted to amidolytically active two chain u-PA (tcu-PA) by plasmin and do not cause lysis of a 125I-fibrin-labeled plasma clot immersed in citrated plasma. However, in a purified system, both rscu-PA-Gly158 and rscu-PA-Glu158 activate plasminogen following Michaelis-Menten kinetics, with a much lower affinity (Km = 60-80 microM) but with a higher turnover rate constant (k2 = 0.01 s-1) as compared to the wild type rscu-PA (Km = 1.0 microM, k2 = 0.002 s-1). We conclude that conversion of scu-PA to tcu-PA is not a prerequisite for the activation of plasminogen. Substitution of Lys158 by Gly158 or Glu158 does, however, markedly decrease the stability of the Michaelis complex.  相似文献   

14.
15.
16.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.  相似文献   

17.
1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10 degrees C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.  相似文献   

18.
Hansson K  Thämlitz AM  Furie B  Furie BC  Stenflo J 《Biochemistry》2006,45(42):12828-12839
Gamma-glutamyl carboxylase catalyzes the modification of specific glutamyl residues to gamma-carboxyglutamyl (Gla) residues in precursor proteins that possess the appropriate gamma-carboxylation recognition signal within the propeptide region. We describe the immunopurification and first biochemical characterization of an invertebrate high molecular weight Gla-containing protein with homologues in mammals. The protein, named GlaCrisp, was isolated from the venom of the marine cone snail Conus marmoreus. GlaCrisp gave intense signals in Western blot experiments employing the Gla-specific antibody M3B, and the presence of Gla was chemically confirmed by amino acid analysis after alkaline hydrolysis. Characterization of a full-length cDNA clone encoding GlaCrisp deduced a precursor containing an N-terminal signal peptide but, unlike other Gla-containing proteins, no apparent propeptide. The predicted mature protein of 265 amino acid residues showed considerable sequence similarity to the widely distributed cysteine-rich secretory protein family and closest similarity (65% identity) to the recently described substrate-specific protease Tex31. In addition, two cDNA clones encoding the precursors of two isoforms of GlaCrisp were identified. The predicted precursor isoforms differed at three amino acid positions (-6, 9, and 25). Analysis by Edman degradation and nanoelectrospray ionization mass spectrometry, before and after methyl esterfication, identified a Gla residue at amino acid position 9 in GlaCrisp. This is the first example of a Gla-containing protein without an obvious gamma-carboxylation recognition site. The results define a new class of Gla proteins and support the notion that gamma-carboxylation of glutamyl residues is phylogenetically older than blood coagulation and the vertebrate lineage.  相似文献   

19.
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.  相似文献   

20.
gdhA1 is a spontaneous mutant of Escherichia coli that causes complete loss of activity of the NADP-specific glutamate dehydrogenase (GDH) encoded by the gdhA gene. The gdhA1 mutational site has been identified by recombinational mapping, polymerase chain reaction (PCR) amplification and DNA sequencing, as an A to G transition at nucleotide 274 of the gdhA coding sequence, resulting in an amino acid change of lysine 92 to glutamic acid. The mutant enzyme forms hybrid hexamers with a wild-type GDH, providing a useful system for analysis of conformational integrity of mutational variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号