首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C4 grasses of the NAD‐ME type (Astrebla lappacea, Eleusine coracana, Eragrostis superba, Leptochloa dubia, Panicum coloratum, Panicum decompositum) and the NADP‐ME type (Bothriochloa bladhii, Cenchrus ciliaris, Dichanthium sericeum, Panicum antidotale, Paspalum notatum, Pennisetum alopecuroides, Sorghum bicolor) were used to investigate the role of O2 as an electron acceptor during C4 photosynthesis. Mass spectrometric measurements of gross O2 evolution and uptake were made concurrently with measurements of net CO2 uptake and chlorophyll fluorescence at different irradiances and leaf temperatures of 30 and 40 °C. In all C4 grasses gross O2 uptake increased with increasing irradiance at very high CO2 partial pressures (pCO2) and was on average 18% of gross O2 evolution. Gross O2 uptake at high irradiance and high pCO2 was on average 3.8 times greater than gross O2 uptake in the dark. Furthermore, gross O2 uptake in the light increased with O2 concentration at both high CO2 and the compensation point, whereas gross O2 uptake in the dark was insensitive to O2 concentration. This suggests that a significant amount of O2 uptake may be associated with the Mehler reaction, and that the Mehler reaction varies with irradiance and O2 concentration. O2 exchange characteristics at high pCO2 were similar for NAD‐ME and NADP‐ME species. NAD‐ME species had significantly greater O2 uptake and evolution at the compensation point particularly at low irradiance compared to NADP‐ME species, which could be related to different rates of photorespiratory O2 uptake. There was a good correlation between electron transport rates estimated from chlorophyll fluorescence and gross O2 evolution at high light and high pCO2.  相似文献   

3.
Thermogenic flowers produce heat by intense respiration, and the rates of O2 consumption (?o2) in some species can exceed those of all other tissues of plants and most animals. By exposing intact flowers to a range of O2 pressures (Po2) and measuring ?o2, we demonstrate that the highest respiration rates exceed the capacity of the O2 diffusive pathway and become diffusion limited in atmospheric air. The male florets on the inflorescence of Arum concinnatum have the highest known mass‐specific ?o2 and can be severely diffusion limited. Intact spadices of Japanese skunk cabbage Symplocarpus renifolius are diffusion limited in air only when ?o2 is maximal, but not at lower levels. True flowers of the sacred lotus Nelumbo nucifera and the appendix of Arum concinnatum are never diffusion limited in air. ?o2Po2 curves are evaluated quantitatively with the ‘Regulation Index’, a new tool to measure dependence of ?o2 on ambient Po2, as well as the conventional ‘Critical Po2’. The study also includes measurements of Po2 within thermogenic tissues with O2‐sensitive fibre optics, and reveals that the diffusion pathway is complicated and that O2 can be provided not only from the surface of the tissues but also from the pith of the flower's peduncle.  相似文献   

4.
The lack of complete Rubisco kinetic data for numerous species is partly because of the time consuming nature of the multiple methods needed to assay all of the Rubisco parameters. We have developed a membrane inlet mass spectrometer method that simultaneously determines the rate of Rubisco carboxylation (vc) and oxygenation (vo), and the CO2 and O2 concentrations. Using the collected data, the Michaels‐Menten equations for vc and vo in response to changing CO2 and O2 concentrations were simultaneously solved for the CO2 (Kc) and O2 (Ko) constants, the maximum turnover rates of the enzyme for CO2 (kcatCO2) and O2 (kcatO2) and the specificity for CO2 relative to O2 (Sc/o). In the C4 species Zea mays Kc was higher but Ko was lower compared with the C3 species Triticum aestivum. The kcatCO2 was higher and the kcatO2 lower in Z. mays compared with T. aestivum and Sc/o was similar in the two species. The Vomax/Vcmax was lower in Z. mays and thus did not correlate with changes in Sc/o. In conclusion, this mass spectrometer system provides a means of simultaneously determining the important Rubisco kinetic parameters, Kc, Ko, kcatCO2,kcatO2 and Sc/o from the same set of assays.  相似文献   

5.
In this work all‐inorganic perovskite CsPbIBr2 are doped with Mn to compensate their shortcomings in band structure for the application of perovskite solar cells (PSCs). The novel Mn‐doped all‐inorganic perovskites, CsPb1?xMnxI1+2xBr2?2x, are prepared in ambient atmosphere. As the concentration of Mn2+ ions increases, the bandgaps of CsPb1?xMnxI1+2xBr2?2x decrease from 1.89 to 1.75 eV. Additionally, when the concentration of Mn dopants is appropriate, this novel Mn‐doped all‐inorganic perovskite film shows better crystallinity and morphology than its undoped counterpart. These advantages alleviate the energy loss in hole transfer and facilitate the charge‐transfer in perovskites, therefore, PSCs based on these novel CsPb1?xMnxI1+2xBr2?2x perovskite films display better photovoltaic performance than the undoped CsPbIBr2 perovskite films. The reference CsPbIBr2 cell reaches a power conversion efficiency (PCE) of 6.14%, comparable with the previous reports. The CsPb1?xMnxI1+2xBr2?2x cells reach the highest PCE of 7.36% (when x = 0.005), an increase of 19.9% in PCE. Furthermore, the encapsulated CsPb0.995Mn0.005I1.01Br1.99 cells exhibit good stability in ambient atmosphere. The storage stability measurements on the encapsulated PSCs reveal that PCE is dropped by only 8% of the initial value after >300 h in ambient. Such improved efficiency and stability are achieved using low‐cost carbon electrodes (without expensive hole transport materials and Au electrodes).  相似文献   

6.
In C3 leaves, the mesophyll conductance to CO2 diffusion, gm, determines the drawdown in CO2 concentration from intercellular airspace to the chloroplast stroma. Both gm and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of gm to changes in CO2 in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO2 calibration system specially designed for a range of CO2 and O2 concentrations. CO2 was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O2 a step increase from 200 to 1000 ppm significantly decreased gm by 26–40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26–38% increase in gm was not statistically significant. The response of gm to CO2 was less in 21% O2. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO2. We discuss the effects of isotope fractionation factors on estimating gm.  相似文献   

7.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

8.
    
Summary The hybrid produced between a Carbondale haploid strain (-methyl-glucoside rapid fermenter) and a haploid strain (non-fermenter), derived from a hybrid between a homothallic and a heterothallicSaccharomyces, showed an irregular segregation pattern with regard to the fermentation of this sugar.To explain this irregularity, three pairs of alleles,MG 1/mg 1,MG 2/mg 2 andMG 3/mg 3, were assumed to be in quantitative control of the fermetation. Haploid cultures carrying the genotypes (1)mg 1 mg 2 mg 3, (2)MG 1 mg 2 mg 3, (3)mg 1 MG 2 mg 3, (4)mg 1 mg 2 MG 3, (5)MG 1 MG 2 mg 3, (6)MG 1 mg 2 MG 3, (7)mg 1 MG 2 MG 3, and (8)MG 1 MG 2 MG 3, were actually recovered. Strains equipped with: either (1) or (2); either (4) or (6); (3); (5); (7); or (8) are non-fermenters, extremely-slow-fermenters, slow-fermenters, medium-fermenters, semi-rapid-fermenters and rapid-fermenters respectively.The role of these genes in sugar fermentation and the identity or nonidentity of some of these genes with maltose and sucrose genes was discussed.With 2 Figures in the Text  相似文献   

9.
This study hypothesized that oxygen uptake (O2) measured with a novel protocol of chasing rainbow trout Oncorhynchus mykiss to exhaustion inside a static respirometer while simultaneously monitoring O2 (O2chase) would generate the same and repeatable peak value as when peak active O2 (O2active) is measured in a critical swimming speed protocol. To reliably determine peak O2chase, and compare to the peak during recovery of O2 after a conventional chase protocol outside the respirometer (O2rec), this study applied an iterative algorithm and a minimum sampling window duration (i.e., 1 min based on an analysis of the variance in background and exercise O2) to account for O2 dynamics. In support of this hypothesis, peak O2active (707 ± 33 mg O2 h−1 kg−1) and peak O2chase (663 ± 43 mg O2 h−1 kg−1) were similar (P = 0.49) and repeatable (Pearson's and Spearman's correlation test; r ≥ 0.77; P < 0.05) when measured in the same fish. Therefore, estimates of O2max can be independent of whether a fish is exhaustively chased inside a respirometer or swum to fatigue in a swim tunnel, provided O2 is analysed with an iterative algorithm and a minimum but reliable sampling window. The importance of using this analytical approach was illustrated by peak O2chase being 23% higher (P < 0.05) when compared with a conventional sequential interval regression analysis, whereas using the conventional chase protocol (1-min window) outside the respirometer increased this difference to 31% (P < 0.01). Moreover, because peak O2chase was 18% higher (P < 0.05) than peak O2rec, chasing a fish inside a static respirometer may be a better protocol for obtaining maximum O2.  相似文献   

10.
A study of lung gas exchange in the fresh water turtle Mauremys caspica leprosa at normal physiological body temperatures (15, 25 and 35 °C) was extended to extreme temperatures (5 and 40 °C) to determine whether the direct relationship between body temperature and ventilatory response found in many lung-breathing ectotherms including other chelonian species was maintained. From 5 to 35 °C the lung ventilation per unit of O2 uptake and CO2 removed declined with temperature. Consequently, lung CO2 partial pressure increased with temperature. Its value was maintained within narrow limits at each thermal constant, suggesting a suitable control throughout the complete ventilatory cycle. At 40 °C the ventilatory response showed the opposite trend. The ratios of ventilation to lung gas exchange increased compared to their values at 35 °C. The impact of this increased breathing-lowering the estimated mean alveolar CO2 partial pressure-was nevertheless less than expected due to an increase in calculated physiological dead space. This suggests that the relative hyperventilation in response to hyperthermia found in Mauremys caspica leprosa is related to evaporative heat loss.Abbreviations BTPS body temperature, ambient pressure, saturated with water vapour - CTM critical thermal maximum - FN2 fractional concentration of nitrogen - PA CO2or PL CO2 alveolar or lung CO2 pressure - PAO2or PLO2 alveolar or lung O2 pressure - PIO2 inspired O2 pressure - R respiratory exchange ratio - STPD standard temperature, standard pressure, dry - T a ambient temperature - T b body temperature - VA alveolar ventilation - VA/VCO2 relative alveolar ventilation (alveolar ventilation per unit of CO2 removed) - VO2 O2 uptake - VCO2 CO2 output - V D anatomical dead space volume - V D physiological dead space volume - VE/VO2 ventilatory equivalent for O2 - VE pulmonary ventilation or expiratory minute volume - VE/VCO2 ventilatory equivalent for CO2 - V T tidal volume  相似文献   

11.
Summary Genetic studies on radiation-induced chlorina and variegated mutants of okra (Abelmoschus esculentus (L.) Moench) revealed the existence of an unstable gene. The normal green color of the leaves is controlled by duplicate genes C1 and C2, either of which produces the green colour. The chlorina plants are C 1 C 1 C 2 C 2. The allele c 1 v is dominant to both C 1 and C 2 but is unstable. The homozygote c 1 v c 1 v c 2 c 2 is a normal green while the heterozygote c i v c 1 c 2 c 2 has a variegated phenotype as a result of the mutation of c 1 v to c 1 during development. In green plants with a c 1 v c{sh1/v}c 2 c 2 genotype, the autonomous mutation of one of the c 1 v alleles to c 1 may take place at the pre-meiotic stage. In the variegated genotype (c 1 v c 1 c 2 c 2), the mutation of c 1 to c 1 v may take place in early ontogeny, thus producing green plants. The allele C 1, when associated with c 1 v in a heterozygous condition, mutates to c 1 at the pre-meiotic stage even in the presence of the allele C 2.  相似文献   

12.
Adenosine A2a receptor (A2aR) colocalizes with dopamine D2 receptor (D2R) in the basal ganglia and modulates D2R-mediated dopaminergic activities. A2aR and D2R couple to stimulatory and inhibitory G proteins, respectively. Their opposing roles in regulating neuronal activities, such as locomotion and alcohol consumption, are mediated by their opposite actions on adenylate cyclase, which often serves as “co-incidence detector” of various activators. On the other hand, the neural actions of A2aR and D2R are also, at least partially, independent of each other, as indicated by studies using D2R and A2aR knock-out mice. Here we co-expressed human A2aR and human D2LR in CHO cells and examined their signaling characteristics. Human A2aR desensitized rapidly upon agonist stimulation. A2aR activity (80%) was diminished after 2 hr of pretreatment with its agonist CGS21680. In contrast, human D2LR activity was sustained even after 2 hr and 18 hr pretreatment with its agonist quinpirole. Long-term (18 hr) stimulation of human D2LR also increased basal cAMP levels in CHO cells, whereas long-term (18 hr) activation of human A2aR did not affect basal cAMP levels. Furthermore, long-term (18 hr) activation of D2LR dramatically sensitized A2aR-induced stimulation of adenylate cyclase in a pertussis toxin-sensitive way. Forskolin-induced cAMP accumulation was significantly increased after short-term (2 hr) human D2LR stimulation and further elevated after long-term (18 hr) D2LR activation. However, neither short-term (2 hr) nor long-term (18 hr) stimulation of A2aR affected the inhibitory effects of D2LR on adenylate cyclase. Co-stimulation of A2aR and D2LR could not induce desensitization or sensitization of D2LR either. In summary, signaling t hrough A2aR and D2LR is distinctive and synergistic, supporting their unique and yet integrative roles in regulating neuronal functions when both receptors are present.  相似文献   

13.
Photorespiration by Chlamydomonas reinhardtii and Anacystis nidulans was measured as the oxygen inhibition of CO2 uptake and the CO2 compensation points. Net photosynthesis was oxygen dependent in Chlamydomonas grown in 5% CO2, but CO2 insensitive in cultures bubbled with air. Anacystis, even when cultured in 5% CO2, exhibited an CO2 insensitive net photosynthesis. The CO2 compensation point of Chlamydomonas grown in cultures bubbled with air and Anacystis grown in 5% CO2 enriched air, were reached shortly after the measurement was begun and the values were very low, less than 10 μl CO2 1?1; while Chlamydomonas grown in 5% CO2 enriched air for 4 days showed a high, but temporary CO2 compensation point (60 μl CO2 1?1). After a two hour adaptation in low CO2, a stable, low CO2 compensation point was reached. It seems that photorespiration can only be detected by the methods used in this study when the algae are cultured in high CO2, but a mechanism exists which blocks photorespiration when the green algae are adapted to low CO2 concentrations. When Chlamydomonas was treated with Diamox, an inhibitor of carbonic anhydrase, after cultivation in low CO2 (air), the cells behaved as if they had been grown in high CO2. They showed an oxygen sensitive net photosynthesis and a high CO2 compensation point. This indicates that carbonic anhydrase plays an important role in the regulation of a measurable photorespiration in Chlamydomonas. The results are discussed in relation to previous observations of photorespiration measured by enzyme assay, metabolic products and gas exchange properties.  相似文献   

14.
Two experiments were conducted to determine the effects of 2-hydroxy-estradiol-17β (2---OH---E2; 0, 50 and 100 μM) and estradiol-17β (E2; 0, 25 and 50 μM) on prostaglandin (PG) E and PGF2α synthesis by day-10 pig blastocysts (day 0 is first day of estrus). Blastocysts were incubated in a modified Krebs-Ringer bicarbonate medium, supplemented with bovine serum albumin (4 mg/ml) and the vitamins and amino acids (essential and nonessential) in Minimum Essential Medium (without phenol red or antibiotics). The incubations were conducted at 39°C for three 2-h periods; the second and third periods included an E2 or catechol estrogen treatment. Release of PGF2α into the culture medium decreased (p<0.001) linearly with increasing concentrations of 2---H---E2 in both periods. Release of PGE was not affected by 2---OH---E2, therefore 2---OH---E2 increased (p<0.06) the PGE:PGF2α. When E2 was added to the medium, release of PGE was decreased (p<0.01) during the second and third periods. Release of PGF2α also was decreased (p<0.05) by E2 during period 2, but E2 did not alter the PGE:PGF2α. Content of PGs in blastocysts at recovery was less than 10% of the PGs released in vitro. Therefore, these studies demonstrate effects of both the primary and catechol forms of E2 on the synthesis of PGE and PGF2α. Catechol estrogens and E2 may inhibit PG synthesis and modify the PGE:PGF2α during the establishment of pregnancy in pigs.  相似文献   

15.
Changes in gene expression of TGF‐β family members and their receptors in response to treatment with H2O2 and a calcium ionophore, A23187, were examined in C2C12 myoblasts and myotubes. The expression of Myf5, an initial regulator of myogenesis, was increased by A23187, and H2O2 inhibited the up‐regulation of Myf5. Treatment with H2O2 decreased the expression of MHC IIb, a protein component of the myofibrils, irrespective of the presence of A23187, suggesting an inhibitory role of oxidative stress for myogenesis. Expression of ligands and receptors for the TGF‐β family was modulated in response to H2O2 and A23187. Treatment with H2O2 decreased expression of TGF‐β3, BMP‐4, ALK4, ALK5, and ActRIIB, and increased expression of inhibin α and inhibin βA in either the myoblast stage or the myotube stage, or both. A23187 potentiated down‐regulation of BMP‐4 and ALK4 expression, and up‐regulation of TGF‐β1, TGF‐β2, inhibin α, inhibin βA, ALK2, and ALK3 expression. These results indicate that oxidative stress and Ca2+ influx affect expression of the TGF‐β family in C2C12 myoblasts and myotubes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The ability of seedlings to tolerate temperature extremes is important in determining the distribution of perennial plants in the arid south-western USA, and the manner in which elevated CO2 impacts the ability of plants to tolerate high temperatures is relatively unknown. Whereas the effects of chronic high temperature (30–38°C) and elevated CO2 are comparatively well understood, little research has assessed plant performance in elevated CO2 during extreme (> 45 °C) temperature events. We exposed three species of Yucca to 360 and 700 μmol CO2 mol–1 for 8 months, then 9 d of high temperature (up to 53 °C) to evaluate the impacts of elevated CO2 on the potential for photosynthetic function during external high temperature. Seedlings of a coastal C3 species (Yucca whipplei), a desert C3 species (Yucca brevifolia), and a desert CAM species (Yucca schidigera), were used to test for differences among functional groups. In general, Yuccas exposed to elevated CO2 showed decreases in carboxylation efficiency as compared with plants grown at ambient before the initiation of high temperature. The coastal species (Y. whipplei) showed significant reductions (33%) in CO2 saturated maximum assimilation rate (Amax), but the desert species (Y. brevifolia and Y. schidigera) showed no such reductions in Amax. Stomatal conductance was lower in elevated CO2 as compared with ambient throughout the temperature event; however, there were species-specific differences over time. Elevated CO2 enhanced photosynthesis in Y. whipplei at high temperatures for a period of 4 d, but not for Y. brevifolia or Y. schidigera. Elevated CO2 offset photoinhibition (measured as Fv/Fm) in Y. whipplei as compared with ambient CO2, depending on exposure time to high temperature. Stable Fv/Fm in Y. whipplei occurred in parallel with increases in the quantum yield of photosystem II (ΦPSII) at high temperatures in elevated CO2. The value of ΦPSII remained constant or decreased with increasing temperature in all other treatment and species combinations. This suggests that the reductions in Fv/Fm resulted from thermal energy dissipation in the pigment bed for Y. brevifolia and Y. schidigera. The greater efficiency of photosystem II in Y. whipplei helped to maintain photosynthetic function at high temperatures in elevated CO2. These patterns are in contrast to the hypothesis that high temperatures in elevated CO2 would increase the potential for photoinhibition. Our results suggest that elevated CO2 may offset high-temperature stress in coastal Yucca, but not in those species native to drier systems. Therefore, in the case of Y. whipplei, elevated CO2 may allow plants to survive extreme temperature events, potentially relaxing the effects of high temperature on the establishment in novel habitats.  相似文献   

17.
Genetics of tolerance to iron chlorosis was investigated in eight crosses involving parents distinctly different in their level of tolerance. The segregating populations with parents and F1s were screened under actual stress conditions in the field. Also, selected crosses were studied for Fe3+ uptake capacity. Tolerance/moderate tolerance to Fe chlorosis was dominant over susceptibility and it was controlled by two sets of nonallelic genes with complementary interaction. Gene Ic 1 has been found to be basic and in complementation with Ic 3 it confers tolerance. Likewise, Ic 2 with Ic 4 confers tolerance. The basic genes Ic 1 and Ic 2 are nonallelic and, in the absence of their respective complementary genes Ic 3 and 4 , ineffective, which results in susceptibility. Of tolerant cultivars, ARC 10372 and Cauvery have been tentatively assigned the genotype of Ic 1 , Ic 2 , Ic 3 , Ic 4 , and moderately tolerant IET 7613, Prasanna and Akashi Ic 1 , 2 Ic 3 Ic 4 . The susceptible ARC 5723 has been assigned Ic 1 , 2 , Ic 3 , Ic 4 , and IET 9829, Ic 1 , 2 Ic 3 Ic 4 . IET 7614 is susceptible, due to the presence of inhibitory genes I-Ic 1 , I-Ic 2 together with ic 1 pt>, ic 2 , Ic 3 , Ic 4 . Further, the gene Pc for purple coleoptile shows linkage with one of the complementary genes with a crossover value of 15.26%, while the gene(s) for seedling height Ts with Ic 1 with a crossover value of 1.7%. It is possible that the gene(s) for iron chlorosis tolerance might belong to the second linkage group, where genes for purple leaf were located.  相似文献   

18.
Addition of fertilizer amendments is regarded as an ideal approach to enhancing phytoextraction. However, there is little information available on the influence of common fertilizers on Cd accumulation of two newly reported Cd accumulators, Cosmos sulphureus and Cosmos bipinnata (C. sulphureus and C. bipinnata). The effects of N (CO(NH2)2), NP (CO(NH2)2 + Ca(H2PO4)2), and NPK (CO(NH2)2 + Ca(H2PO4)2 + KCl) fertilizers on Cd accumulation and subcellular distribution of C. sulphureus and C. bipinnata were studied in a 70-d pot experiment. The results showed that Cd uptake of C. sulphureus and C. bipinnata with NPK fertilizer was significantly higher than control, N, and NP fertilizers, especially 3.8- and 4.7-fold higher than control (p < 0.05). Compared with C. bipinnata, C. sulphureus achieved higher biomass and Cd uptake in aboveground parts under fertilizer treatments, especially NPK fertilizer. The Cd subcellular distribution revealed that segregation of Cd to Cd-rich granules (MRG) might play an important role in Cd detoxification in both species. C. sulphureus is more likely than C. bipinnata to separate the Cd in MRG and reduce the partition in the heat-denatured protein fraction, especially with NPK fertilizer. Therefore, C. sulphureus combined with NPK fertilizers could be an effective method to remediate Cd-polluted farmland soils in China.  相似文献   

19.
Summary A much higher incidence of alcohol flushing among Orientals in comparison to Caucasians, i.e., >50% vs 5%–10%, has been attributed to racial differences in alcohol-metabolizing enzymes. A large majority of Orientals are atypical in alcohol dehydrogenase-2 locus (ADH 2 ), and their livers exhibit significantly higher ADH activity than the livers of most Caucasians. Approximately 50% of Orientals lack the mitochondrial aldehyde dehydrogenase (ALDH2) activity, and elimination of acetaldehyde might be disturbed. We determined by means of hybridization of genomic DNA samples with allele specific oligonucleotide probes, genotypes of the ADH 2 and ALDH 2 loci in Japanese alcohol flushers and nonflushers. We found that all individuals with homozygous atypical ALDH 2 2 /ALDH 2 2 and most of those with heterozygous atypical ALDH 1 2 /ALDH 2 2 were alcohol flushers, while all subjects with homozygous usual ALDH 1 2 /ALDH 1 2 were nonflushers. Frequency of the atypical ADH 2 2 was found to be higher in alcohol flushers than in nonflushers, but the statistical significance was not established in the sample size examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号